API стандартизации адресов

А что если проиндексировать представление, то это по-прежнему будет представление?

Представление – это виртуальная таблица, формирующая данные из одной или нескольких таблиц. По сути, это именованный запрос, который получает данные из нижележащих таблиц, когда вы вызываете запрос к этому представлению. Вы можете улучшить производительность запросов, создав кластеризованных индекс и некластеризованные индексы у этого представления, аналогично как вы создаете индексы у таблицы, но основной нюанс состоит в том, что первоначально создается кластеризованный индекс, а затем вы можете создать некластеризованный.

Когда создается индексированное представление (материализованное представление), тогда само определение представления остается отдельной сущностью. Это, в конце концов, всего лишь жестко прописанный оператор

SELECT

, хранящийся в базе данных. А вот индекс совсем другая история. Когда вы создаете кластеризованный или некластеризованный индекс у предастваления, то данные физически сохраняются на диск, аналогично обычному индексу. В дополнение, когда в нижележащих таблицах изменяются данные, то индекс представления автоматически изменяется (это означает, что вы можете захотеть избежать индексирования представлений тех таблиц, в которых происходят частые изменения).

Перед тем как вы сможете создать индекс у представления, оно должно соответствовать нескольким ограничениям. К примеру, представление может ссылаться только на базовые таблицы, но не другие представления и эти таблицы должны находиться в той же самой базе данных. На самом деле там множество других ограничений, так что не забудьте обратиться к документации по

SQL Server

за всеми грязными подробностями.

Автоматическое определение почтового индекса

Никто не любит почтовые индексы – получатели их часто путают, а интернет-магазины не проверяют. Из-за неправильно указанного индекса возникают путаницы, на разрешение которых требуется время. Чтобы почтовые индексы больше не мешали нашей работе с интернет-магазинами, а также облегчили согласование доставки операторами нашего Call-центра – мы сделали так, что теперь индексы подбираются автоматически при вводе заказов онлайн в Личном Кабинете.

Продолжая развивать возможности Личного кабинета 2.0, мы, наконец, сделали так, что правильный индекс автоматически подбирается по вводимому адресу доставки. Даже если оператор или менеджер не переключил раскладку и в строке ввода адреса появилась абракадабра – программа самостоятельно преобразовывает ее в точный адрес, предлагая варианты на выбор, и подбирает почтовый индекс.

биту

Программа умеет определять неправильную кодировку, опечатки, искать в строке дом и квартиру. При вводе программа предлагает исправленные варианты, которые ей кажутся подходящими. Если оператор или менеджер видит подходящий адрес в списке подсказок он выбирает его мышкой или клавиатурой. В этот момент программа сама определяет почтовый индекс.

В итоге данные выглядят так:

би

Функция автоматического определения почтового индекса пока доступна при вводе заказов онлайн через Личный кабинет. В ближайшее время она станет доступна и тем, кто загружает нам заказы файлом или через API.

Долой индексы! И, да здравствует, удобная работа в Личном кабинете. 

Почему в sql server кластеризованные и некластеризованные индексы называются сбалансированным деревом?

Базовые индексы в SQL Server, кластеризованные или некластеризованные, распространяются по наборам страниц – узлам индекса. Эти страницы организованы в виде определенной иерархии с древовидной структурой, называемой сбалансированным деревом. На верхнем уровне находится корневой узел, на нижнем, конечные узлы листьев, с промежуточными узлами между верхним и нижним уровнями, как показано на рисунке:

Структура индекса

Корневой узел предоставляет главную точку входа для запросов, пытающихся получить данные через индекс. Начиная с этого узла, подсистема запросов инициирует переход по иерархической структуре вниз к подходящему конечному узлу, содержащему данные.

К примеру, представим, что поступил запрос на выборку строк, содержащих значение ключа равное 82. Подсистема запросов начинает работу с корневого узла, который отсылает к подходящему промежуточному узлу, в нашем случае 1-100. От промежуточного узла 1-100 происходит переход к узлу 51-100, а оттуда к конечному узлу 76-100.

Если индексы настолько замечательны, то почему бы просто не создать их на каждый столбец?

Ни одно доброе дело не должно оставаться безнаказанным. По крайней мере, именно так и обстоит дело с индексами. Разумеется, индексы отлично себя показывают, пока вы выполняете запросы на выборку данных оператором

SELECT

, но как только начинается частый вызов операторов

INSERTUPDATE DELETE

, так пейзаж очень быстро меняется.


Когда вы инициируется запрос данных оператором

SELECT

, подсистема запросов находит индекс, продвигается по его древовидной структуре и обнаруживает искомые данные. Что может быть проще? Но все меняется, если вы инициируете оператор изменения, такой как

UPDATE

. Да, для первой части оператора подсистема запросов может снова использовать индекс для обнаружения модифицируемой строки – это хорошие новости. И если происходит простое изменение данных в строке, не затрагивающее изменение ключевых столбцов, то процесс изменения пройдет вполне безболезненно.

Но что, если изменение приведет к разделению страниц, содержащих данные, или будет изменено значение ключевого столбца, приводящее к переносу его в другой индексный узел – это приведёт к тому, что индексу может потребоваться реорганизация, затрагивающая все связанные индексы и операции, в результате будет повсеместное падение производительности.


Аналогичные процессы происходят при вызове оператора

DELETE

. Индекс может помочь найти месторасположение удаляемых данных, но само по себе удаление данных может привести к перестановке страниц. Касаемо оператора

INSERT

, главного врага всех индексов: вы начинаете добавлять большое количество данных, что приводит к изменению индексов и их реорганизации и все страдают.

Так что учитывайте виды запросов к вашей базе данных при размышлениях какой тип индексов и в каком количестве стоит создавать. Больше не значит лучше. Перед тем как добавить новый индекс на таблицу просчитайте стоимость не только базовых запросов, но и объем занимаемого дискового пространства, стоимость поддержания работоспособности и индексов, что может привести к эффекту домино для других операций.

Почему таблица не может иметь два кластеризованных индекса?

Хотите короткий ответ? Кластеризованный индекс – это и есть таблица. Когда вы создаете кластеризованный индекс у таблицы, подсистема хранения данных сортирует все строки в таблице в порядке возрастания или убывания, согласно определению индекса. Кластеризованный индекс это не отдельная сущность как другие индексы, а механизм сортировки данных в таблице и облегчения быстрого доступа к строкам с данными.

Представим, что у вас есть таблица, содержащая историю операций по продажам. Таблица Sales включает в себя такую информация как идентификатор заказа, позицию товара в заказе, номер товара, количество товара, номер и дату заказа и т.д. Вы создаёте кластеризованный индекс по столбцам

OrderID LineID

, с сортировкой в порядке возрастания, как показано в следующем

T-SQL

коде:

CREATE UNIQUE CLUSTERED INDEX ix_oriderid_lineid
ON dbo.Sales(OrderID, LineID); 

Когда вы запустите этот скрипт все строки в таблице будут физически отсортированы сначала по столбцу OrderID, а затем по LineID, но сами данные останутся в единственном логическом блоке, в таблице. По этой причине вы не можете создать два кластеризованных индекса.

База данных

Как было отмечено ранее индексы могут улучить производительность системы, т.к. они обеспечивают подсистему запросов быстрым путем для нахождения данных. Однако, вы должны также принять во внимание то, как часто вы собираетесь вставлять, обновлять или удалять данные.

Когда вы изменяете данные, то индексы должны также быть изменены, чтобы отразить соответствующие действия над данными, что может значительно снизить производительность системы. Рассмотрим следующие рекомендации при планировании стратегии индексирования:

  • Для таблиц которые часто обновляются используйте как можно меньше индексов.
  • Если таблица содержит большое количество данных, но их изменения незначительны, тогда используйте столько индексов, сколько необходимо для улучшение производительности ваших запросов. Однако хорошо подумайте перед использованием индексов на небольших таблицах, т.к. возможно использование поиска по индексу может занять больше времени, нежели простое сканирование всех строк.
  • Для кластеризованных индексов старайтесь использовать настолько короткие поля насколько это возможно. Наилучшим образом будет применение кластеризованного индекса на столбцах с уникальными значениями и не позволяющими использовать NULL. Вот почему первичный ключ часто используется как кластеризованный индекс.
  • Уникальность значений в столбце влияет на производительность индекса. В общем случае, чем больше у вас дубликатов в столбце, тем хуже работает индекс. С другой стороны, чем больше уникальных значения, тем выше работоспособность индекса. Когда возможно используйте уникальный индекс.
  • Для составного индекса возьмите во внимание порядок столбцов в индексе. Столбцы, которые используются в выражениях WHERE (к примеру, WHERE FirstName = ‘Charlie’) должны быть в индексе первыми. Последующие столбцы должны быть перечислены с учетом уникальности их значений (столбцы с самым высоким количеством уникальных значений идут первыми).
  • Также можно указать индекс на вычисляемых столбцах, если они соответствуют некоторым требованиям. К примеру, выражение которые используются для получения значения столбца, должны быть детерминистическими (всегда возвращать один и тот же результат для заданного набора входных параметров).

Если кластеризованная таблица даёт множество преимуществ, то зачем использовать кучу?

Вы правы. Кластеризованые таблицы отличны и большинство ваших запросов будут лучше выполнятся к таблицам, имеющим кластеризованный индекс. Но в некоторых случаях вы возможно захотите оставить таблицы в их естественном первозданном состоянии, т.е. в виде кучи, и создать лишь некластеризованные индексы для поддержания работоспособности ваших запросов.

Куча, как вы помните, хранит данные в случайном порядке. Обычно подсистема хранения данных добавляет в таблицу данные в той последовательности в которой они вставляются, однако подсистема также любит перемещать строки с целью более эффективного хранения. В результате у вас нет ни единого шанса предсказать в каком порядке будут храниться данные.

Если подсистема запросов должна найти данные без преимуществ некластеризованного индекса, то она сделает полное сканирование таблицы для нахождения нужных ей строк. На очень маленьких таблицах это обычно не проблема, но как только куча растет в своих размерах производительность быстро падает.

Конечно, некластеризованный индекс может помочь, используя указатель на файл, страницу и строку где хранятся необходимые данные – обычно это намного лучшая альтернатива сканированию таблицы. Но даже в этом случае трудно сравнивать с преимуществами кластеризованного индекса при рассмотрении производительности запросов.

Однако куча может помочь улучшить производительность в определенных ситуациях. Рассмотрим таблицу с большим количеством вставок, но редкими обновлениями или удалением данных. К примеру, таблица, хранящая лог, преимущественно используется для вставки значений до тех пор пока не будет архивирована.

В куче вы не увидите разбиением страниц и фрагментацию данных, как это случается с кластеризованным индексом, потому что строки просто добавляются в конец кучи. Слишком большое разделение страниц может иметь значительное влияние на производительность и в не самом хорошем смысле.

Но отсутствие обновления и удаления данных не должны рассматриваться как единственная причина. Способ выборки данных также является важным фактором. К примеру, вы не должны использовать кучу, если часто выполняете запросы диапазонов данных или запрашиваемые данные часто должны быть сортированы или сгруппированы.

Всё это означает, что вы должны рассматривать возможность использования кучи только когда работаете с особо-маленькими таблицами или всё ваше взаимодействие с таблицей ограничено вставкой данных и ваши запросы чрезвычайно просты (и вы все-равно используете некластеризованные индексы).

IDENTITY

Зачем использовать покрывающий индекс взамен составного индекса?

Во-первых, давайте убедимся, что мы понимаем различие между ними. Составной индекс это просто обычный индекс, в который включено больше одного столбца. Несколько ключевых столбцов может использоваться для обеспечения уникальности каждой строки таблицы, также возможен вариант, когда первичный ключ состоит из нескольких столбцов, обеспечивающих его уникальность, или вы пытаетесь оптимизировать выполнение часто вызываемых запросов к нескольким столбцам.

Как было сказано, запрос может извлечь огромную выгоду, если все необходимые данные сразу расположены на листьях индекса, как и сам индекс. Это не проблема для кластеризованного индекса, т.к. все данные уже там (вот почему так важно хорошенько подумать когда вы создаете кластеризованный индекс).

Но некластеризованный индекс на листьях содержит только ключевые столбцы. Для доступа ко всем остальным данным оптимизатору запросов необходимы дополнительные шаги, что может вызвать значительные дополнительные накладные расходы для выполнения ваших запросов.


Вот где покрывающий индекс спешит на помощь. Когда вы определяете некластеризованный индекс, то можете указать дополнительные столбцы к вашим ключевым. К примеру, представим, что ваше приложение часто запрашивает данные столбцов

OrderID OrderDate

в таблице

Sales

SELECT OrderID, OrderDate
FROM Sales
WHERE OrderID = 12345;

Вы можете создать составной некластеризованный индекс на обоих столбцах, но столбец OrderDate только добавит накладных расходов на обслуживание индекса, но так и не сможет служить особо полезным ключевым столбцом. Лучшее решение будет это создание покрывающего индекса с ключевым столбцом

OrderID

и дополнительно включенным столбцом

OrderDate

CREATE NONCLUSTERED INDEX ix_orderid
ON dbo.Sales(OrderID)
INCLUDE (OrderDate);

При этом вы избегаете недостатков, возникающих при индексации излишних столбцов, в то же время сохраняете преимущества хранения данных на листьях при выполнении запросов. Включенный столбец не является частью ключа, но данные хранятся именно на конечном узле, листе индекса.

Имеет ли значение количество дубликатов в ключевом столбце?

Когда вы создаете индекс, вы обязаны постараться уменьшить количество дубликатов в ваших ключевых столбцах. Или более точно: стараться держать коэффициент повторяющихся значений настолько низким, насколько это возможно.

Если вы работаете с составным индексом, то дублирование относится ко всем ключевым столбцам в целом. Отдельный столбец может содержать множество повторяющихся значений, но повторения среди всех столбцов индекса должно быть минимальным. К примеру, вы создаете составной некластеризованный индекс на столбцах

FirstName LastName

, вы можете иметь множество значений равных John и множество Doe, но вы хотите иметь как можно меньше значений John Doe, или лучше только одно значение John Doe.

Коэффициент уникальности значений ключевого столбца называется избирательностью индекса. Чем больше уникальных значений, тем выше избирательность: уникальный индекс обладает наибольшей возможной избирательностью. Подсистема запросов очень любит столбцы с высоким значением избирательности, особенно если эти столбцы участвуют в условиях выборки WHERE ваших наиболее часто выполняемых запросов.

Чем выше избирательность индекса, тем быстрее подсистема запросов может уменьшить размер результирующего набора данных. Обратной стороной, разумеется, является то, что столбцы с относительно небольшим количеством уникальных значений редко будут хорошими кандидатами на индексирование.

Как вообще индекс может улучшить производительность запросов, если приходится переходить по всем этим индексным узлам?

Во-первых, индексы не всегда улучшают производительность. Слишком много неверно созданных индексов превращают систему в болото и понижают производительность запросов. Правильнее сказать, что если индексы были аккуратно применены, то они могут обеспечить значительный прирост в производительности.

Подумайте об огромной книге, посвященной настройке производительности

SQL Server

(бумажной, не об электронном варианте). Представьте, что вы хотите найти информацию о конфигурировании

. Вы можете водить пальцем постранично через всю книгу или открыть содержание и узнать точный номер страницы с искомой информацией (при условии, что книга правильно проиндексирована и в содержании верные указатели). Безусловно, это сэкономит вам значительное время, не смотря на то, что вам надо сначала обратиться к совершенно другой структуре (индексу), чтобы получить необходимую вам информацию из первичной структуры (книги).


Как и книжный указатель, указатель в

SQL Server

позволяет вам выполнять точные запросы к нужным данным вместо полного сканирования всех данных, содержащихся в таблице. Для маленьких таблиц полное сканирование обычно не проблема, но большие таблицы занимают много страниц с данными, что в результате может привезти с значительному времени выполнения запроса, если не существует индекса, позволяющего подсистеме запросов сразу получить правильное месторасположение данных. Представьте, что вы заблудились на многоуровневой дорожной развязке перед крупным мегаполисом без карты и вы поймёте идею.

Как вызвать

Чтобы вызвать метод, зарегистрируйтесь и подтвердите почту.

Пример запроса:

curl -X POST 
-H "Content-Type: application/json" 
-H "Authorization: Token ${API_KEY}" 
-H "X-Secret: ${SECRET_KEY}" 
-d '[ "мск сухонска 11/-89" ]' 
https://cleaner.dadata.ru/api/v1/clean/address

// https://github.com/hflabs/dadata-csharp

var token = "${API_KEY}";
var secret = "${SECRET_KEY}";
var api = new CleanClientAsync(token, secret);
var result = await api.Clean<Address>("мск сухонска 11/-89");

// https://github.com/ekomobile/dadata
// Использует API-ключ из переменной окружения DADATA_API_KEY,
// а секретный ключ из переменной окружения DADATA_SECRET_KEY

import (
    "context"
    dadata "github.com/ekomobile/dadata/v2"
)

func main() {
    api := dadata.NewCleanApi()
    query := "мск сухонска 11/-89"
    result, err := api.Address(context.Background(), query)
}

var url = "https://cleaner.dadata.ru/api/v1/clean/address";
var token = "${API_KEY}";
var secret = "${SECRET_KEY}";
var query = "мск сухонска 11/-89";

var options = {
    method: "POST",
    mode: "cors",
    headers: {
        "Content-Type": "application/json",
        "Authorization": "Token "   token,
        "X-Secret": secret
    },
    body: JSON.stringify([query])
}

fetch(url, options)
.then(response => response.text())
.then(result => console.log(result))
.catch(error => console.log("error", error));

// https://github.com/hflabs/dadata-php

$token = "${API_KEY}";
$secret = "${SECRET_KEY}";
$dadata = new DadataDadataClient($token, $secret);
$result = $dadata->clean("address", "мск сухонска 11/-89");

# https://github.com/hflabs/dadata-py

from dadata import Dadata
token = "${API_KEY}"
secret = "${SECRET_KEY}"
dadata = Dadata(token, secret)
result = dadata.clean("address", "мск сухонска 11/-89")

Укажите при вызове:

Тело запроса передавайте в кодировке UTF-8.

Как изменить установленное по умолчанию значение коэффициента заполнения индекса?

Изменение установленного по умолчанию коэффициента заполнения индекса это одно дело. Понимание того как установленный по умолчанию коэффициент работает это другое. Но сначала пару шагов назад. Коэффициент заполнения индекса определяет количество пространства на странице для хранения индекса на нижнем уровне (уровень листьев) перед тем как начать заполнять новую страницу.

По умолчанию, значение коэффициента заполнения индекса в

SQL Server

равно 0, что равнозначно значению 100. В результате все новые индексы автоматически наследуют эту настройки, если вы специально в коде не укажете отличное от стандартного для системы значения или измените поведение по умолчанию. Вы можете воспользоваться

SQL Server Management Studio

для корректировки установленного по умолчанию значения или запустить системную сохраненную процедуру

sp_configure

. К примеру, следующий набор

T-SQL

команд устанавливает значение коэффициента равное 90 (предварительно необходимо переключится в режим продвинутых настроек):

EXEC sp_configure 'show advanced options', 1;
GO
RECONFIGURE;
GO
EXEC sp_configure 'fill factor', 90;
GO
RECONFIGURE;
GO 


После изменения значения коэффициента заполнения индекса необходимо перезагрузить сервис

SQL Server

. Теперь вы можете проверить установленное значение, запустив процедуру sp_configure без указанного второго аргумента:

EXEC sp_configure 'fill factor'
GO 

Данная команда должна вернуть значение равное 90. В результате все вновь создаваемые индексы будут использовать это значение. Вы можете проверить это, создав индекс и запросить значение коэффициента заполнения:

USE AdventureWorks2021; -- ваша база данных
GO
CREATE NONCLUSTERED INDEX ix_people_lastname
ON Person.Person(LastName);
GO
SELECT fill_factor FROM sys.indexes
WHERE object_id = object_id('Person.Person')
  AND name='ix_people_lastname'; 


В данном примере мы создали некластеризованный индекс в таблице

Person

в базе данных

AdventureWorks2021

. После создания индекса мы можем получить значение коэффициента заполнения из системной таблиц sys.indexes. Запрос должен вернуть 90.

Однако, представим, что мы удалили индекс и снова создали его, но теперь указали конкретное значение коэффициента заполнения:

CREATE NONCLUSTERED INDEX ix_people_lastname
ON Person.Person(LastName)
WITH (fillfactor=80);
GO
SELECT fill_factor FROM sys.indexes
WHERE object_id = object_id('Person.Person')
  AND name='ix_people_lastname'; 


В этот раз мы добавили инструкцию

WITH

и опцию

fillfactor

для нашей операции создания индекса

CREATE INDEX

и указали значение 80. Оператор

SELECT

теперь возвращает соответствующее значение.

До сих пор всё было довольно-таки прямолинейно. Где вы реально можете погореть во всём этом процессе, так это когда вы создаёте индекс, использующий значение коэффициента по умолчанию, подразумевая, что вы знаете это значение. К примеру, кто-то неумело ковыряется в настройках сервера и он настолько упорот, что ставит значение коэффициента заполнения индекса равное 20.

Тем временем вы продолжаете создавать индексы, предполагая значение по умолчанию равное 0. К сожалению, у вас нет способа узнать значение коэффициента до тех пор как вы не создадите индекс, а затем проверите значение, как мы делали в наших примерах.

Другая проблема о которой вам стоит помнить это перестроение индексов. Как и при создании индекса вы можете конкретизировать значение коэффициента заполнения индекса, когда его перестраиваете. Однако, в отличие от команды создания индекса, перестройка не использует серверные настройки по умолчанию, несмотря на то что так может показаться. Даже больше, если вы конкретно не укажете значение коэффициента заполнения индекса, то

SQL Server

будет использовать то значение коэффициента, с которым этот индекс существовал до его перестройки. К примеру, следующая операция

ALTER INDEX

перестраивает только что созданный нами индекс:

ALTER INDEX ix_people_lastname
ON Person.Person REBUILD;
GO
SELECT fill_factor FROM sys.indexes
WHERE object_id = object_id('Person.Person')
  AND name='ix_people_lastname'; 


Когда мы проверим значение коэффициента заполнения мы получим значение равное 80, потому что именно его мы указали при последнем создании индекса. Значение по умолчанию не учитывается.

Как вы видите изменить значение коэффициента заполнения индекса не такое уж сложно дело. Намного сложнее знать текущее значение и понимать когда оно применяется. Если вы всегда конкретно указывается коэффициент при создании и перестройки индексов, то вы всегда знаете конкретный результат.

Как поставить верхний или нижний индекс в word

Все, кому приходилось работать с формулами и математическими переменными в Ворде, когда-нибудь интересовались, как поставить верхний или нижний индекс в Word. К сожалению, многих пользователей ставит в тупик задача — поставить степень числа или переменной. На самом деле всё делается достаточно просто. Именно на этот вопрос и постараемся ответить в статье. Подробнее о том, как поставить надстрочный и подстрочный знаки в Ворде далее в статье. Давайте разбираться. Поехали!

Очень удобно, что разработчики Microsoft вынесли необходимые иконки прямо на панель вкладки «Главная». Найти нужные кнопки можно в разделе «Шрифт», прямо под полем «Размер шрифта». Пользоваться ими очень просто. Сначала введите букву или цифру, к которой хотите добавить индекс. Затем нажмите на соответствующую кнопку добавления подстрочного или надстрочного знака. После этого вы заметите, что палочка курсора стала вполовину меньше. Далее, можно ввести значение. Чтобы вернуться к нормальному формату набора текста, нажмите кнопку добавления подстрочного или надстрочного знака ещё раз. Обратите внимание на то, что, когда функция активирована, соответствующая иконка инструмента будет выделена серым.

Кнопки на панели инструментов

Второй способ — воспользоваться горячими клавишами. Такой подход поможет немного ускорить работу с инструментом. Чтобы поставить подстрочный знак, используйте комбинацию Ctrl и =. Если необходимо добавить надстрочное значение, примените комбинацию клавиш Ctrl, Shift, .

Ещё один вариант — кликнуть по специальной иконке в правом нижнем углу блока «Шрифт» в ленте инструментов, чтобы открыть полное меню. В разделе «Видоизменение» отметьте галочками пункты «надстрочный» либо «подстрочный». В зависимости от отмеченного варианта курсор примет соответствующий вид и положение.

Выбор подстрочного знака

Если в документе большое количество уравнений, где много значений и переменных в квадрате или других степенях, будет удобнее работать непосредственно в конструкторе формул. После того как вы добавили уравнение, откроется вкладка «Конструктор». На панели инструментов находится специальная кнопка «Индекс». Нажав на неё, откроется меню, в котором необходимо будет выбрать нужный вариант расположения индекса. После того как вы выберите подходящий, на листе появятся два пустых поля в виде квадратов. Внутри большого введите букву или цифру, внутри маленького введите значение степени либо подпись. Достоинство такого подхода в том, что он позволяет одновременно добавлять несколько индексов для более сложных математических расчётов.

Разные варианты расположения текста

Каждый из описанных способов удобнее использовать в том или ином случае. Выбирайте тот вариант, который является более подходящим для решения ваших задач. Теперь работа с индексами в Microsoft Word больше не будет для вас проблемой. Оставляйте в комментариях своё мнение о статье, особенно если она оказалась полезной и задавайте возникшие вопросы по теме.

Какая взаимосвязь между ограничениями на уникальность значения и первичным ключом с индексами таблицы?

Первичный ключ и и ограничение уникальности обеспечивают, что значения в столбце будут уникальны. Вы можете создать только один первичный ключ у таблицы и он не может содержать значения

NULL

. Вы можете создать у таблицы несколько ограничений на уникальность значения и каждый из них может иметь единственную запись с

NULL

Когда вы создаете первичный ключ, подсистема хранения данных так же создает уникальный кластеризованный индекс, в случае если уже кластеризованный индекс не был создан. Однако, вы можете переопределить установленное по умолчанию поведение и тогда будет создан некластеризованный индекс.

Когда вы создаете ограничение на уникальность, подсистема хранения данных создает уникальный некластеризованный индекс. Но вы можете указать создание уникального кластеризованного индекса, если он не был создан ранее.

В общем случае, ограничение на уникальность значение и уникальный индекс это одно и то же.

Можно ли создать кластеризованный индекс на столбце, содержащем дубликаты?

И да, и нет. Да вы можете создать кластеризованный индекс на ключевом столбце, содержащем дубликаты значений. Нет, значение ключевого столбца не смогут остаться в состоянии не уникальности. Позвольте объяснить. Если вы создаёте неуникальный кластерный индекс (non-unique clustered index) на столбце, то подсистема хранения данных добавляет к дублирующему значению целочисленное значение (uniquifier), чтобы удостовериться в уникальности и, соответственно, обеспечить возможность идентифицировать каждую строку в кластеризованной таблице.


К примеру, вы можете решить создать в таблице с данными о клиентах кластеризованный индекс по столбцу

LastName

, хранящим фамилию. Столбец содержит такие значения как Franklin, Hancock, Washington и Smith. Затем вы вставляете значения Adams, Hancock, Smith и снова Smith. Но значение ключевого столбца обязательно должны быть уникальны, поэтому подсистема хранения данных изменит значение дубликатов таким образом, что они будут выглядеть примерно так: Adams, Franklin, Hancock, Hancock1234, Washington, Smith, Smith4567 и Smith5678.

На первый взгляд такой подход кажется нормальным, но целочисленное значение увеличивает размер ключа, что может стать проблемой при большом количестве дубликатов, а эти значения станут основой некластеризованного индекса или ссылкой внешнего ключа. По этим причинам вы всегда должны стараться создавать уникальный кластеризованный (unique clustered indexes) при любой возможности. Если это невозможно, то по крайней мере постарайтесь использовать столбцы с очень высоким содержание уникальных значений.

Можно ли создать некластеризованный индекс только для определенного подмножества данных ключевого столбца?

По умолчанию, некластеризованный индекс содержит по одной строке для каждой строки таблицы. Конечно, вы можете сказать то же самое относительно кластеризованного индекса, принимая в расчет, что такой индекс это и есть таблица. Но что касается некластеризованного индекса, то отношение «один к одному» важный концепт, потому что, начиная с версии

SQL Server 2008

, у вас есть возможность создать фильтруемый индекс, который ограничивает включенные в него строки. Фильтруемый индекс может улучшить производительность выполнения запросов, т.к. он меньше по размеру и содержит отфильтрованную, более аккуратную, статистику, чем вся табличная — это приводит к созданию улучшенных планов выполнения.

В дополнение, фильтруемый индекс легко создать. В операторе

CREATE INDEX

просто необходимо указать в

WHERE

условие фильтрации. К примеру, вы можете отфильтровать из индекса все строки, содержащие NULL, как показано в коде:

CREATE NONCLUSTERED INDEX ix_trackingnumber
ON Sales.SalesOrderDetail(CarrierTrackingNumber)
WHERE CarrierTrackingNumber IS NOT NULL;


Мы можем, фактически, отфильтровать любые данные, которые не важны в критических запросах. Но будьте внимательны, т.к.

SQL Server

накладывает несколько ограничений на фильтруемые индексы, такие, как невозможность создать фильтруемый индекс у представления, так что внимательно читайте документацию.

Также, может случиться, что вы можно достичь подобных результатов созданием индексированного представления. Однако, фильтруемый индекс имеет несколько преимуществ, таких как возможность уменьшить стоимость обслуживания и улучшить качество ваших планов выполнения. Фильтруемые индексы также допускают перестройку в онлайн-режиме. Попробуйте это сделать с индексируемым представлением.

Незаменимые реквизиты при онлайн-покупках

Для проведения любых онлайн-расчетов у покупателей всегда запрашивают:

  • эмбоссинг — имя и фамилия латинскими буквами, выдавленные на внешней стороне пластика, если выдана неименная карта, параметр заменяют фамилией и именем владельца карты в латинской транслитерации;
  • номер — 16 или 18 цифр с лицевой стороны карты;
  • период действия карты, например, 05/24 показывает, что карты действительна до 31 мая 2024 года;
  • тип карты или платежная система, в рамках которой выпущена карта, например Visa, MasterCard, Мир;
  • дополнительный реквизит защиты — комбинация из цифр на обороте пластика CVV/CVC код.

Для большинства онлайн-платежей этих данных достаточно. Поэтому при утере пластика любой злоумышленник сможет совершить покупку в сети интернет, перевод средств или оплатить товар или услугу на сайте. Если мошеннику станет известен еще и ПИН-код, он сможет снять наличные с карты или оплатить покупки в любых магазинах, которые рассчитывают по карте.

Некоторые зарубежные сайты проводят дополнительную идентификацию держателей карты. Они запрашивают:

  1. Почтовый код или Postal Code — поле, в которое вносят цифровые или буквенно-цифровые кодировки почтового индекса адреса проживания.
  2. Платежный адрес или Billing Address — адрес постоянной регистрации плательщика в латинской транслитерации, который был указан при открытии счета в банке или при оформлении карты.
  3. Адрес доставки или Sipping Address — адрес проживания или текущего местонахождения плательщика в латинской транслитерации.

Индекс не пишется на карте Сбербанка или любого другого банка мира, поэтому такая информация недоступна посторонним лицам. Ее не найти нигде в свободном доступе, если только владелец карты сам не давал кому-либо эту информацию.

Некластеризованный индекс


В отличие от кластеризованного индекса, листья некластеризованного индекса содержат только те столбцы (

ключевые

), по которым определен данный индекс, а также содержит указатель на строки с реальными данными в таблице. Это означает, что системе подзапросов необходима дополнительная операция для обнаружения и получения требуемых данных. Содержание указателя на данные зависит от способа хранения данных: кластеризованная таблица или куча.

Если указатель ссылается на кластеризованную таблицу, то он ведет к кластеризованному индексу, используя который можно найти реальные данные. Если указатель ссылается на кучу, то он ведет к конкретному идентификатору строки с данными. Некластеризованные индексы не могут быть отсортированы в отличие от кластеризованных, однако вы можете создать более одного некластеризованного индекса на таблице или представлении, вплоть до 999.

Это не означает, что вы должны создавать как можно больше индексов. Индексы могут как улучшить, так и ухудшить производительность системы. В дополнение к возможности создать несколько некластеризованных индексов, вы можете также включить дополнительные столбцы (

included column

) в свой индекс: на листьях индекса будет храниться не только значение самих индексированных столбцов, но и значения этих не индексированных дополнительных столбцов. Этот подход позволит вам обойти некоторые ограничения, наложенные на индекс. К примеру, вы можете включить неидексируемый столбец или обойти ограничение на длину индекса (900 байт в большинстве случаев).

Обязательно ли создавать кластеризованный индекс на столбце с первичным ключом?

Вы можете создать кластеризованный индекс на любой столбце, соответствующем необходимым условиям. Это верно, что кластеризованный индекс и ограничение первичного ключа созданы друг для друга и их брак заключен на небесах, так что усвойте факт, что когда вы создаете первичный ключ, тогда же будет автоматически создан кластеризованный индекс, если он не был создан ранее.

Главная цель кластеризованного индекса это сортировка всех строк к вашей таблице на основе ключевого столбца, указанного при определении индекса. Это обеспечивает быстрый поиск и легкий доступ к данным таблицы.

Первичный ключ таблицы может быть хорошим выбором, потому что он однозначно идентифицирует каждую строку в таблицы без необходимости добавлять дополнительные данные. В некоторых случаях лучшим выбором будет суррогатный первичный ключ, обладающий не только признаком уникальности, но и малым размером, а значения которого увеличиваются последовательно, что делает некластеризованные индексы, основанные на этом значении более эффективными.

Оптимизатор запросов также любит такое сочетание кластеризованого индекса и первичного ключа, потому что соединение таблиц происходит быстрее, чем при соединении другим способом, не использующим первичный ключ и ассоциированный с ним кластеризованный индекс. Как я и говорил это брак, заключенный на небесах.

В конце стоит, однако, отметить, что при создании кластеризованного индекса необходимо принять во внимание несколько аспектов: как много некластеризованных индексов будет основываться на нём, как часто будут изменяться значение ключевого столбца индекса и на сколько ни большие.

Когда значение в столбцах кластеризованого индекса изменятся или индекс не будет обеспечивать должной производительности, тогда все другие индексы таблицы могут быть задеты. Кластеризованный индекс должен быть основан на наиболее устойчивом столбце, значения которого увеличиваются в определенном порядке, но не изменяются в случайном.

Индекс должен поддерживать запросы к наиболее часто используемым данным таблицы, таким образом запросы получают все преимущества того, что данные сортированы и доступны на корневых узлах, листьях индекса. Если первичный ключ соответствует этому сценарию, то используйте его. Если же нет, то выберите другой набор столбцов.

Особенности проверки адресов российских покупателей

Главная сложность для российских держателей карт — банковская система РФ не использует индекс и биллинг-адрес при регистрации клиентов. Верификацию всех адресов клиентов производят в США. Но система AVS не распространяет действие на все страны мира. При этом международные платежные системы, не рекомендуют пропускать заполнение этих разделов по нескольким причинам:

  • при регулярных покупках на зарубежных сайтах происходит повторная сверка данных, поэтому будет легче защитить свою карту от взлома, фишинга или других мошеннических действий;
  • продавец может запросить ручное подтверждение указанных сведений, например, скан квитанции об оплате коммунальных платежей, где фигурирует такой же адрес, как в форме на оплату или фотографию банковского договора на обслуживание карты;
  • владелец интернет-магазина может обратиться в банк-эмитент карты с просьбой подтвердить причастность клиента к указанному адресу;
  • продавец товара может отклонить оплату при пустом поле или в той ситуации, когда банк не подтвердит причастность клиента к введенному адресу.

Большинство интернет-магазинов знают об особенностях работы российской банковской системы и об отсутствии системы AVS. Поэтому они редко отклоняют платежи, никто не хочет терять покупателей. Но при этом они сохраняют платежный адрес в своей внутренней базе, чтобы использовать его в спорных ситуациях.

Можно попробовать ввести любой вымышленный адрес, но это осложнит дальнейшие операции или приведет к блокировке расчетов с интернет-магазином в случае выявления расхождений при ручной проверке. Большинство крупных сайтов eBay, Amazon и платформы игрового контента проводят операции без сверки платежного адреса.

Прикручиваем счастье к… ну, давайте к сайту.

Итак, радостно качаем базу и думаем, как же её впихнуть в используемый нами КакойТамУНасСовременныйSQL (а то и НеSQL).

Ищем в гугле, ищем в яндексе, ищем в apt-cache, последний нам радостно и выдаёт:

envek@envek-work:~$ apt-cache search dbf
pgdbf - converter of XBase / FoxPro tables to PostgreSQL
dbf2mysql - xBase <--> MySQL

Здорово-то как! Я использую Postgres и конвертировать буду в него. В базе используется ещё досовская кодировка, так что призовём на помощь iconv. Кстати, самые свежие версии pgdbf (>= 0.6.2) сами шаманством владеют и iconv призывают, но до убунтовского репозитория они ещё не добрались.

mv {PIndx08,post_indices}.dbf # Переименовываем файл, как будет называться таблица
pgdbf -u post_indices.dbf | iconv -f CP866 > post_indices.sql # Конвертируем

Что же, теперь надо заставить это работать.

Я использую Ruby on Rails, на её примере и покажу. Кто рельсы не понимает, может пролистать.

Cоздаём модель, которая будет нашу информацию из базы данных и представлять в приложении

rails g model PostIndex

В миграцию вдумчиво копируем структуру таблицы из оригинальной базы, делаем индекс первичным ключом:

class CreatePostIndices < ActiveRecord::Migration
  def change
    create_table :post_indices, id: false do |t|
      t.string :index,     limit:  6
      t.string :ops_name,  limit: 60
      t.string :ops_type,  limit: 50
      t.string :ops_subm,  limit:  6
      t.string :region,    limit: 60
      t.string :autonom,   limit: 60
      t.string :area,      limit: 60
      t.string :city,      limit: 60
      t.string :city_1,    limit: 60
      t.date   :act_date
      t.string :index_old, limit:  6
      t.index  :index_old
    end
    reversible do |to|
      to.up do
        execute 'ALTER TABLE post_indices ADD PRIMARY KEY (index);'
      end
    end
  end
end

Слегка настраиваем модель:

class PostIndex < ActiveRecord::Base
  self.primary_key = 'index'
end


Делаем простенький контроллер, который нам почтовый индекс в json-формате отдаст:

# В консоли: rails generate controller PostIndices
class PostIndicesController < ApplicationController
  def get
    @index = PostIndex.where(index: params[:index]).first
    @index = PostIndex.where(index_old: params[:index]).order(:index).first! unless @index
    respond_to do |format|
      format.json { render json: @index.to_json(only: [:index, :region, :area, :city]) }
    end
  end
end

Прописываем в config/routes.rb маршрут, по которому приложение нам отдаст желанные индексы:

get '/post_index/:index(.:format)', controller: :post_indices, action: :get

И, главное: html и javascript, которые и сделают всю магию для пользователя.

HTML-форма:

Проверка postal code, billing и sipping address

При заполнении Postal Code и Billing Address российским пользователям важно указывать реальную информацию. Такая мера предосторожности необходима, чтобы при совершении следующего платежа на сайте у иностранного продавца не возникало сомнений в отношении личности владельца карты, иначе операцию могут отклонить.

Индекс карты совпадает с кодировкой населенного пункта, в котором проживает клиент. А в раздел Billing Address вписывают:

  • город;
  • улицу, проспект, переулок;
  • номер дома, строения, корпуса;
  • номер квартиры или комнаты.

Если sipping adress совпадает с billing adress в разделах будут одни и те же данные. Адреса заполняют на русском языке, но в латинской транслитерации. В итоговом варианте это выглядит так:

Некоторые плательщики вводят в разделы sipping adress и billing adress одни и те же данные, независимо от того совпадают они в реальности или нет. В этом случае в платеже могут отказать, если проведут проверку личности вручную. Для верификации у иностранцев могут запросить скан договора на банковское обслуживание, где указан адрес прописки.

Хотя ручную проверку адресов иностранцев проводят не все сайты, не стоит вводить один и те же данные в оба раздела, если они разные. В особо спорных ситуациях могут не только отклонить оплату, но и заблокировать карту в самый неподходящий момент. После этого придется объясняться с банком, что это действительно вы проводили платеж, а не мошенники.

Если самостоятельно перевести название улицы для заполнение разделов billing или shipping адресов сложно, воспользуйтесь программой транслит-онлайн. В верхнем поле напишите адрес кириллицей, а затем скопируйте полученный латинский вариант.

Вставьте готовый текст в поля на странице, где проводите оплату товара. Не переводите русские слова на английский язык, даже если это возможно по смыслу. К примеру улица Мира, будет трансилитерирована как Mira, а не Peace или World. Попытка дословного перевода усложнит процесс идентификации адреса, который внесен в русские базы данных на русском языке.

Создаем свои индексы для баз 1с. со своей структурой и настройками!

HighLoad оптимизацияБесплатно (free)

Доброго времени суток, коллеги.
Хочу рассказать, как можно посмотреть план запроса через механизм Extended Events.
Я хочу ответить на вопрос – как разработчику через SQL Management Studio посмотреть, что запрос, который он сделал, работает оптимально.
На Инфостарте есть несколько статей, которые посвящены трассировкам в этом механизме. Мне, когда я не понимал, как это правильно делать, не хватало простой пошаговой инструкции.
Я напишу инструкцию, выполняя которую можно будет увидеть план запроса, который выполняется из базы данных.

сегодня в 07:00   
108   
Andrei_Ivanov   
0    

Структура индекса

Индексы создаются для столбцов таблиц и представлений. Индексы предоставляют путь для быстрого поиска данных на основе значений в этих столбцах. Например, если вы создадите индекс по первичному ключу, а затем будете искать строку с данными, используя значения первичного ключа, то

SQL Server

сначала найдет значение индекса, а затем использует индекс для быстрого нахождения всей строки с данными. Без индекса будет выполнен полный просмотр (сканирование) всех строк таблицы, что может оказать значительное влияние на производительность.

Вы можете создать индекс на большинстве столбцов таблицы или представления. Исключением, преимущественно, являются столбцы с типами данных для хранения больших объектов (

LOB

), таких как

imagetext

или

varchar(max)

. Вы также можете создать индексы на столбцах, предназначенных для хранения данных в формате

XML

, но эти индексы устроены немного иначе, чем стандартные и их рассмотрение выходит за рамки данной статьи. Также в статье не рассматриваются

columnstore

индексы. Вместо этого я фокусируюсь на тех индексах, которые наиболее часто применяются в базах данных

SQL Server


Индекс состоит из набора страниц, узлов индекса, которые организованы в виде древовидной структуры —

сбалансированного дерева

. Эта структура является иерархической по своей природе и начинается с корневого узла на вершине иерархии и конечных узлов, листьев, в нижней части, как показано на рисунке:

Структура индекса

Когда вы формируете запрос на индексированный столбец, подсистема запросов начинает идти сверху от корневого узла и постепенно двигается вниз через промежуточные узлы, при этом каждый слой промежуточного уровня содержит более детальную информацию о данных.

Подсистема запросов продолжает двигаться по узлам индекса до тех пор, пока не достигнет нижнего уровня с листьями индекса. К примеру, если вы ищете значение 123 в индексированном столбе, то подсистема запросов сначала на корневом уровне определит страницу на первом промежуточном (intermediate) уровне.

В данном случае первой страница указывает на значение от 1 до 100, а вторая от 101 до 200, таким образом подсистема запросов обратится ко второй странице этого промежуточного уровня. Далее будет выяснено, что следует обратиться к третьей странице следующего промежуточного уровня.

Отсюда подсистема запросов прочитает на нижнем уровне значение самого индекса. Листья индекса могут содержать как сами данные таблицы, так и просто указатель на строки с данными в таблице, в зависимости от типа индекса: кластеризованный индекс или некластеризованный.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *