Динамическая NFC-метка для скоростного обмена данными

Замок с радиочастотной идентификацией на базе nfc контроллера pn532

Привет друзья.

В данной теме пойдет речь о конфигурации микроконтроллера через UART (Universal Asynchronous Receiver-Transmitter) интерфейс. А рассмотрим мы это на примере MQTT логгера. В данном случае, это будет логгер температуры. Мне это устройство потребовалось на работе, даже не мне, а моим коллегам, и оно действительно работает и приносит огромную пользу т.к контроль температуры производится совместно с отличной, на мой взгляд, системой мониторинга Zabbix с оперативными оповещениями, построением графиков, блэк-джеком и… Подробнее о дружбе Arduino и Zabbix можно почитать тут

Но как всегда, есть нюансы. А заключаются они в том, что в будущем, обслуживать армию мелких контроллеров придется людям, которые заняты своими задачами и им попросту некогда изучать Arduino, не говоря уже о серьезных альтернативах, разбираться в том, как прописать нужные значения переменных в программу и загрузить её в микроконтроллер. Все настройки необходимо производить быстро, с явным указанием изменяемого параметра и его значения. Ровно также, как это делается с любым промышленным оборудованием.

И тут на помощь приходит UART

Микросхема UART to USB имеется в большинстве плат семейства Arduino, а там, где её нет, обычно выведены соответствующие “пины”. И все это очень облегчает жизнь т.к позволяет общаться с контроллером, просто подключив его к компьютеру напрямую или через переходник, благо их везде навалом, да и стоят они как пачка семечек. Остается только запустить любой терминал, который умеет доставлять в конец строки символ “перевод строки”, что известен в народе как “n”, а в ASCII таблице имеет номер 0A.

Кстати, в Serial мониторе Arduino IDE выставить символ конца строки можно так

Ну а дальше только, что и остается, как общаться с устройством на той стороне. И тут мы переходим к основному алгоритму программы. Но перед этим хочу отметить, и это ВАЖНО, что за любое упрощение жизни, всякие красивости и прочее, приходиться платить, и цена довольно высока! В данном случае, это ОЗУ микроконтроллера. Поэтому не раскатываем губы, а если очень хочется, то берем следующий по характеристикам микроконтроллер. А начинать мы будем с ATmega328P, что известен в народе как Arduino UNO, Arduino Nano, IBoard v1.1 и т.д по списку. Заканчивать Вы можете чем угодно, хоть ATmega2560, ESP8266 или ESP32. В противном случае, производим оптимизацию кода, отказываемся от громоздких библиотек, или вообще, от Arduino IDE.

Что мы хотим получить

Вся конфигурация микроконтроллера должна храниться в энергонезависимой памяти (ПЗУ) известной нам как EEPROMM.

Если в ПЗУ конфигурация отсутствует, необходимо иметь резервный план. И им станет сброс конфигурации на настройки по умолчанию. Это поведение знакомо всем, особенно по домашним дешевым маршрутизаторам, а значит, интуитивно понятно.

Выводить справку при начале общения пользователя и устройства, на мой взгляд, как манеры высшего общества. Контроллер должен представляться и сообщать всю необходимую информацию о себе и о том, как с ним вести диалог.

Все команды должны быть просты и иметь не двусмысленное значение.

И конечно, мы должны иметь возможность просмотра текущего состояния датчиков или процессов, которыми занимается устройство в свободное от общения с нами время.

Как сохранять конфигурацию в EEPROM

Пожалуй, стоит начать с того, как сохранить конфигурацию микроконтроллера в энергонезависимую память. Для этих целей, в стандартный набор инструментов Arduino IDE входит библиотека для работы с EEPROM.

#include <EEPROM.h>

На данный момент нас интересуют две функции, это чтение и запись

EEPROM.get(address, variable);
EEPROM.put(address, variable);

Обе принимают два параметра:

Адрес, начиная с которого будет произведено чтение или запись данных в память

Переменная чье содержимое надо сохранить или в которую нужно из памяти прочитать

Особенность работы этих функция заключается в том, что в зависимости от типа переданной им переменной во втором параметре, будет произведено чтение или запись ровно того количества данных которое соответствует размеру типа этой самой переменной. На простом языке это означает, что если переменная variable будет иметь типа byte, то и работать мы будем с объемом памяти в 1 байт. И тоже самое произойдет с абсолютно любым типом данных пока мы не упремся в размеры самого EEPROM или ОЗУ микроконтролера. Из этого всего следует, что мы можем создать свой собственный тип данных, разместить в нем необходимую нам информацию и всего лишь двумя функциями помещать его в память и извлекать обратно.

И в этом нам поможет пользовательский составной тип – структура (struct). Данный тип позволяет объединить в себе различные типы данных, упорядочить их и присвоить им понятные имена.

Это общий пример для большего понимания, как объединить несколько типов данных в одной структуре, получить к ним доступ, записать и прочитать их из EEPROM.

Наша структура будет немного сложнее, но суть остается той же самой.

// Дополнительная структура описывающая IPv4 адреса
struct addres {
byte a;
byte b;
byte c;
byte d;
};

// Структура объекта конфига для хранения в EEPROM
struct configObj {
addres ip;
addres subnet;
addres gateway;
addres dns;
byte mac[6];
byte hex;
char server[40];
char topic[40];
} config;

Данная структура хранит сетевые настройки для работы с Ethernet модулем (w5100 и выше) Arduino, базовые настройки для связи с MQTT брокером. Сразу при описании структуры мы объявили новую переменную с именем config с типом нашей структуры.

ВАЖНО: кроме наших данных в структуре имеется дополнительная переменная с именем hex. Её задача, это контроль наличия наших данных в EEPROM. Она всегда должна содержать одно и тоже значение. Представьте ситуацию, что вы взяли контроллер в EEPROM которого находится какая-либо информация (может там чисто, но мы этого не знаем наверняка) и мы прочитаем данные и поместим их в нашу переменную. В итоге мы получим данные которым нельзя доверять, а что еще хуже, это если эти самые данные нарушат работу внешнего оборудования.

Более правильным, на мой взгляд, будет проверка значений по конкретно определенным адресам. Например, мы знаем, что в 16 байте должно быть значение 0xAA и если оно действительно там, то мы убеждаемся, что это наша информация. Естественно, что контрольных точек может быть несколько и разумеется с разными значениями, это увеличит гарантию того, что данные являются нашими, но 100% гарантии не даст. Для более серьезных проектов есть более серьезные методы, например, подсчет контрольной суммы всего набора данных.

Также структура может иметь вложенные структуры, у нас ими являются: ip, subnet, gateway, dns. Вы можете отказаться от такого варианта и записывать данные просто в массив байт, как это было сделано с MAC адресом. Естественно, что обращаться к этим полям нужно по-разному.

Запись данных в поле subnet

config.subnet = {255, 255, 255, 0};

Запись данных в поле mac

byte mac[] = {0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02};
memcpy(config.mac, mac, 6);

С записью данных в поле server все еще проще

config.server = “mqtt.nfcexpert.ru”;

Функция, которая возвращает нашу структуру данных с полностью заполненными полями.

// Начальный конфиг
configObj defaultConfig() {
configObj config = {
{192, 168, 0, 200},
{255, 255, 255, 0},
{192, 168, 0, 1},
{192, 168, 0, 1},
{0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02},
0xAA, // Не трогать! Используется для проверки конфигурации в EEPROM
F(“mqtt.nfcexpert.ru”),
F(“arduino/serial/config”)
};
return config;
}

К примеру, два последних значения записывать не обязательно, тогда эти поля останутся пусты если использовать данную функцию для возврата к “заводским” настройкам.

Вот пример того, как используя описанную нами структуру, мы проверяем целостность настроек в EEPROM и в случае не совпадения hex значений, загружаем настройки по умолчанию.

const byte startingAddress = 9;
bool configured = false;

void loadConfig() {
EEPROM.get(startingAddress, config);
if (config.hex == 170) configured = true;
else config = defaultConfig();
configEthernet(); // Функция производящая настройку сети
}

Как контроллеру начать понимать, что от него хотят

В Arduino имеется функция, вызываемая каждый раз, когда в передаваемый буфер данных попадает знакомый нам символ перевода строки.

void serialEvent() {
// Вызывается каждый раз, когда что-то прилетает по UART
// Данные передаются посимвольно. Если в строке 100 символов, то функция будет вызвана 100 раз
}

И в контексте обсуждаемой нами программы, мы можем представить ее в следующем виде

void serialEvent() {
  serialEventTime = millis();
  if (console.available()) {
    char c = (char)console.read();
    if (inputCommands.length() < inputCommandsLength) {
      if (c != ‘n’) inputCommands = c;
      else if (inputCommands.length()) inputCommandsComplete = true;
    }
  }
}

Её задача, символ за символом, собрать в кучу все переданные нами данные и при получении заветного символа перевода строки (именно он даст нам понять, что передача сообщения завершена) сообщить, что команда получена и передать накопленный буфер данных своей напарнице по цеху.

Но перед тем как это сделать стоит рассмотреть альтернативную ветку развития событий, а именно тот факт, что нам попросту могут прислать огромную, кучу шлака без волшебного символа, а раз могут, значит рано или поздно пришлют. И мы бесполезно потратим ценные ресурсы микроконтроллера, что может привести к непредсказуемым результатам в дальнейшем. Поэтому, в логику функции, мы добавим дополнительное ограничение на количество переданных символов, если оно достигнуто, то попросту перестаем воспринимать последующие данные.

Останется только избавиться от них, и самым удобным моментом будет, когда этот поток шлака прекратиться. Чтобы об этом узнать мы будем запоминать время, когда пришел каждый из символов переданной строки перезаписывая соответствующую временную переменную данными о следующем символе и т.д пока поток не иссякнет. И как только расхождение текущего времени CPU и времени, когда поступил последний символ превысит некоторое значение, пусть это будет 1 секунда, мы очистим нашу память. Этот простой механизм напоминающий амнезию позволит избавить нас от лишних проблем.

Переменная отвечающая за размер принимаемого буфера

const byte inputCommandsLength = 60;

Теперь можно переходить к напарнице предыдущей героини и, по совместительству, основной рабочей лошадки – функции обрабатывающей адекватно полученные данные.

void serialEventHandler() {
// вызывается в loop и проверяет взведена ли переменная inputCommandsComplete
// в полученных данных пытается распознать команды
}

По началу я хотел описать данную функцию в упрощенном варианте, но в процессе понял, что ничего хорошего из этого не выйдет, и я решил описать только ключевые моменты, но их будет достаточно, на мой взгляд.

Разбор serialEventHandler

Полученные данные будут переданы нам в переменной inputCommands с типом String

В первую очередь стоит почистить ее от лишних пробельных символов. Они часто встречаются в начале и в конце строки если пользователь копирует текст, а не набирает его самостоятельно. Это распространенная ситуация, приводящая к отказу принятия команды и бороться с ней очень просто.

inputCommands.trim();

Далее стоит отсеять команды, не несущие никакой динамической информации, например, help, restart, reset и т.п это предписывающие команды которые заставляют контроллер выполнять строго описанные функции без вмешательства в их работу.

if (inputCommands == F(“help”)) {
consoleHelp();
} else if (inputCommands == F(“restart”)) {
resetFunc();
} else {
// Все сложные команды обрабатываются в этом блоке
}

Как Вы видите, все очень просто и скучно. Но не в том случае если команда динамическая, то есть содержит не только саму команду (заголовок) но и полезную нагрузку (параметр) которая может меняться раз от раза. Простой пример это команда изменения ip адреса и её варианты:

ip 37.140.198.90

ip 192.168.0.244

ip 10.10.10.88

В данном случае, нам стоит понять, относится ли данная команда именно к ip адресу. Для этого в наборе String имеется отличный метод, позволяющий производить сравнение переданного ему параметра с началом строки.

if (inputCommands.startsWith(F(“ip”))) {
// Строка inputCommands начинается с пары символов “ip”
}

Если все идет так, как мы задумали, то нам стоит отделить динамическую часть – наш параметр, от заголовка и получить полезную нагрузку. В этом нам поможет, опять же из набора String, метод substring позволяющий получать часть строки с указанием начального и конечного символа подстроки. Последний параметр указывать не обязательно и в таком случае мы получим всю строку начиная с указанного символа.

inputCommands.substring(4)

В данном случае начиная с 4-его и заканчивая последним. И как Вы успели заметить, отсчет мы начинаем не с третьего символа, что соответствует нашей строке без вступительного “ip”, а на один больше т.к между заголовком и параметром имеется разделяющий символ в виде пробела.

Далее, полученную строку мы передадим в функцию, занимающуюся разбором на компоненты и принимающую следующие параметры:

Указатель на переменную с типом char, для этого нам потребуется преобразовать наш тип String

Символ разделителя, что для IPv4 является точка “.”

Указатель на массив типа byte, которому будет присвоен результат разбора

Количество искомых элементов в строке

И система счисления, подразумеваемая в качестве исходной для записи элементов подстроки

/*
Парсинг
https://stackoverflow.com/questions/35227449/convert-ip-or-mac-address-from-string-to-byte-array-arduino-or-c
*/
void parseBytes(const char* str, char sep, byte* bytes, int maxBytes, int base) {
for (int i = 0; i < maxBytes; i ) {
bytes[i] = strtoul(str, NULL, base);
str = strchr(str, sep);
if (str == NULL || *str == ”) break;
str ;
}
}

В нашем случае выглядеть это будет следующим образом

byte ip[4];
parseBytes(inputCommands.substring(4).c_str(), ‘.’, ip, 4, 10);

А дале все становится еще проще, попросту проверить попадает ли наш ip адрес, в список правильных адресов. И самой простой проверкой послужит проверка первого байта адреса на несоответствие не угодным нам сетям (0, 127, 255)

if (ip[0] != 127 and ip[0] != 255 and ip[0] != 0) {
// Производим необходимые нам действия с ip адресом, например, запись в конфиг
config.ip = {ip[0], ip[1], ip[2], ip[3]};
}

Вы в праве реализовать собственные проверки, какие только душе угодны.

Также хотелось бы отметить, что обрабатывать некоторые параметры проще и быстрее через их короткие записи. К таким можно отнести маску подсети устройства. Например, привычный дня нас адрес 192.168.0.1 с маской подсети 255.255.255.0 можно записать в виде 192.168.0.1/24, где цифра 24 указывает нашу подсеть в краткой форме. А, следовательно, мы можем записать несколько кратких форм масок подсети в следующем виде:

subnet 255.255.255.0 или subnet 24

subnet 255.255.0.0 или subnet 16

subnet 255.0.0.0 или subnet 8

Это основные маски, и я не описывал все существующие т.к в этом нет нужды, но если Вам интересно, то почитать про них можно в wikipedia.

if (inputCommands.startsWith(F(“subnet”))) {
    String input = inputCommands.substring(8);
    if (input == F(“24”))      config.subnet = {255, 255, 255,   0};
    else if (input == F(“16”)) config.subnet = {255, 255,   0,   0};
    else if (input == F(“8”))  config.subnet = {255,   0,   0,   0};
    else {
// Все остальные маски попадают в этот блок
        byte subnet[4];
        parseBytes(input.c_str(), ‘.’, subnet, 4, 10);
config.subnet = {subnet[0], subnet[1], subnet[2], subnet[3]};
    }
}

MAC адрес хранится у нас в виде массива байт. Его перезапись другим массивом производится с помощью функции memcpy

if (inputCommands.startsWith(F(“mac”))) {
byte mac[6];
parseBytes(inputCommands.substring(4).c_str(), ‘:’, mac, 6, 16);
memcpy(config.mac, mac, 6);
}

Изменение адреса MQTT сервера

if (inputCommands.startsWith(F(“server”))) {
String server = inputCommands.substring(8);
server.trim();
if (server.length() < 40) server.toCharArray(config.server, 40);
}

В принципе теперь понятно, как производить получение, разбор и сохранение конфигурации в EEPROM микроконтроллера.

Как это выглядит на практике

Заливаем программу в микроконтроллер и подключаемся к Arduino по usb или через переходник. Открываем терминал и нас приветствуют краткой справкой с описанием доступных команд.

– —————————————————————————————
# Sensor with data sending to mqtt server (c) nfcexpert.ru
# Use the “config” command to view the current configuration
# To change the configuration, specify the parameter name and its new value with a space,
# for example “ip 192.168.0.200”, “subnet 255.255.255.0” or “mac AA:BB:CC:DD:EE:FF”
# You can also specify a subnet using the mask 24, 16 or 8
# Additional commands:
# sensors – view current data from sensors
# config – view current configuration
# save – saves the current configuration
# reset – resets all settings
# restart – restarts the device
# eeprom clear – removes all contents of eeprom
# help – view this help
– —————————————————————————————

Т.к. в EEPROM микроконтроллера не была обнаружена конфигурация (волшебный hex байт нам подсказал), то были задействованы стандартные настройки. Просмотреть текущую конфигурацию можно командой config

config
# ip: 192.168.0.200
# subnet: 255.255.255.0
# gateway: 192.168.0.1
# dns: 192.168.0.1
# mac: 00:AA:BB:CC:DE:02
# server: mqtt.nfcexpert.ru
# topic: arduino/serial/config

чтобы изменить значение любого из этих параметров необходимо передать имя параметра и его новое значение, разделенные между собой пробелом.

ip 10.10.10.99
# ok
gateway 10.10.10.1
# ok
dns 10.10.10.1
# ok

После окончания конфигурации необходимо сохранить настройки и если были затронуты критические параметры, например, сеть, то перезапустить Arduino соответствующей командой.

save
# ok
restart
# ok
# restarting device…

Если параметр был успешно принят, то контроллер ответит нам “ok”, а в противном случае ругнется.

ip 127.0.0.1
# bad ip

Также мы получим негативный ответ если команда не была распознана.

qwerqwer1243
# bad command

С остальными командами Вы разберетесь самостоятельно.

Исходник: MQTT_CLIENT_328_SERIAL_CONFIG.zip

PS: в общем то это статья родилась только для того, чтобы в соседнем форуме с системой мониторинга Zabbix появилась ссылка на устройство, но я надеюсь, что она также станет полезна любителям домашней автоматизации и не только.

Клонируем карту mastercard в режиме magstripe

Перейдем непосредственно к принципу клонирования. Данный метод атаки на бесконтактные карты был опубликован двумя исследователями

из Австрийского университета. В его основе лежит общий принцип, который называется

Skimming

. Это такой сценарий, при котором злоумышленник крадет деньги с банковской карточки путем считывания (копирования) информации с этой карты. В общем случае здесь важно сохранять PIN-код в тайне и не допускать его утечки. Но в методе австрийских ребят это нам знать не нужно.

(MasterCard PayPass M/Chip)MagStripe (MasterCard PayPass MagStripe)

режим.

MagStripe — это режим поддержки карт с магнитной полосой. Этот режим реализуется на картах MasterCard с бесконтактным интерфейсом. Режим MagStripe скорее нужен для банков которым сложно переводить всю инфраструктуру для поддержки чиповых бесконтактных EMV транзакций. Кстати, у карт Visa также есть аналогичный режим работы — PayWave MSD (Magnetic Stripe Data).

Процесс обработки транзакции для бесконтактных карт урезан в сравнении с чиповыми и обычно работает в следующем режиме:

  1. Терминал отправляет команду SELECT PPSE (Proximity Payment System Environment). Карта шлет список поддерживаемых приложений.
  2. Терминал отправляет команду SELECT. В ответ получает необходимые детали приложения.
  3. Терминал отправляет команду GET_PROCESSING_OPTIONS. Карта отвечает какой тип аутентификации она поддерживает и существует ли там верификация держателя карты.
  4. Терминал отправляет команду READ_RECORDS. Карта в ответе посылает Track1 и Track2 практически аналогичный тому, что записан на магнитной полосе карты.
  5. Терминал отправляет команду COMPUTE_CRYPTOGRAPHIC_CHECKSUM. Которая означает, что карта должна на основе переданного Unpredictable Number сгенерировать значение CVC3.

image

Карта поддерживает специальную команду COMPUTE CRYPTOGRAPHIC CHECKSUM, аргументом которой являются данные, определенные в объекте Unpredictable Number Data Object (UDOL).

В результате карта с помощью алгоритма 3DES и секретного ключа вычисляет динамическую величину CVC3 (Card Verification Code).

В качестве аргумента функции 3DES используется конкатенация данных UDOL и счетчика транзакции (Application Transaction Counter,ATC).

Таким образом, значение величины CVC3 всегда зависит от объектов UN и ATC.

Другими словами, эта команда нужна, чтобы карта сгенерировала некую “подпись” для того, чтобы эмитент мог верифицировать карту. Однако, в этой подписи отсутствует подпись самой транзакции. В подписи содержатся значения ATC — 2 байта, CVC3 (Track1)

— 2 байта, CVC3 (Track2) — 2 байта, которые генерируются картой на основе секретного ключа, который также знает банк-эмитент и счетчика транзакций (ATC). При этом также для генерации подписи POS-терминал сообщает карте UN (Unpredictable Number)

— 4 байта, который также используется в генерации подписи. Unpredictable Number препятствует формированию кодов аутентификации на реальной карте для последующего использования в мошеннических транзакциях. Для атаки нам сильно мешает UN, поскольку 4 байта не представляется возможным перебрать, не выйдя за пределы счетчика транзакций. Однако, в спецификации этого есть некоторые слабости.

Во-первых, спецификация ограничивает UN кодировкой чисел, а именно Двоично-Десятичным Кодом (BCD), что по сути означает что, если мы посмотрим на такое закодированное число в HEX, то мы увидим только цифры от 0 до 9, все остальные значения считаются как бы запрещенными. Таким образом, количество UN уменьшается с 4,294,967,295 до 99,999,999.

Во-вторых, количество значащих цифр UN определяется картой. Таким образом в зависимости от специальных параметров в треках количество цифр в UN может быть от 10 до 10000 в зависимости от типа карты, на практике чаще всего встречается 1000 значений.

Таким образом план атаки выглядит следующий:

  1. Считываем карту и узнаем количество значащих цифр у UN, которое будет предоставлять терминал
  2. Перебираем все UN, получаем все возможные значения функции COMPUTE_CRYPTOGRAHIC_CHECKSUM, сохраняем их в соответствующей таблице с мапингом UN -> Result
  3. Подносим к POS-терминалу, узнаем число, которое просит POS-терминал.
  4. Выбираем из таблицы нужный результат и подставляем его в ответ терминалу.
  5. Транзакция уходит.
  6. PROFIT. Но успех одобрения транзакции не гарантирован, поскольку банк эмитент может отклонить такую транзакцию.

image

Стоит отметить также, что счетчик транзакций (ATC) препятствует повторному использованию ранее использованных кодов аутентификации, а значит что если мы использовали такую атаку, то необходимо копировать карту заново, поскольку счетчик транзакции уже использовался для получения информации и был использован в подписи, что значит, что если мы имели счетчик транзакций 1000, а после отправили транзакцию в банк, то банк уже не примет транзакции со счетчиком ниже <1001.

В большинстве случаев передаваемые данные с карты статические для всех транзакций. Конечно, кроме COMPUTE_CRYPTOGRAPHIC_CHECKSUM. Для генерации динамического CVC3 кода, приложение карты должно быть прочитано командой SELECT, затем GET_PROCESSING_OPTIONS, а только потом COMPUTE_CRYPTOGRACHIC_CHECKSUM и это довольно важный момент.

Для работы с терминалом и картой использовалась программа Terminal Simulator от MasterCard. Он прекрасно работает с различными NFC-считывателями и считывателями смарт карт. К тому же он абсолютно бесплатен. Он позволяет тестировать карты при различных настройках POS-терминала и ведет подробный лог всех запросов от терминала и ответов карты. Также его можно использовать для тестирования приложения на телефоне, работающего в режиме карты.

Для чтения карты использовался NFC считыватель ACR122.

Теперь давайте попробуем все это преобразовать в код. Приложение будем писать на языке Kotlin под Android. Сначала попытаемся описать общую структуру команды.

data class Command(
    	var CLA: String = 0x00.toString(),
    	var INS: String = 0x00.toString(), 
    	var P1: String = "", 
    	var P2: String = "",
    	var Lc: String = "",
    	var Nc: String = "",
    	var Le: String = "", 
    	var Nr: String = "", 
    	var SW1WS2: String = "" 
) {
	fun split(): ByteArray {
    	return getHexString().hexToByteArray()
	}
 
	fun getHexString() = CLA.plus(INS).plus(P1).plus(P2).plus(Lc).plus(Nc).plus(Le).plus(Nr).plus(SW1WS2)
}

Для начала нам нужно настроить работу с NFC. На телефоне мы можем работать в двух режимах. В режиме карты, это когда мы отвечаем на команды от терминала, и в режиме терминала когда отсылаем команды и производим считывание, например карты. Т.е. сначала мы можем клонировать карту, а потом сделать так чтобы на запросы от терминала мы отвечали уже заготовленными командами.

Далее упрощенная реализация взаимодействия с NFC:

	private var nfcAdapter: NfcAdapter? = null                                                  /*!< represents the local NFC adapter */
	private var tag: Tag? = null  /*!< represents an NFC tag that has been discovered */
	private lateinit var tagcomm: IsoDep  /*!< provides access to ISO-DEP (ISO 14443-4) */
	private val nfctechfilter = arrayOf(arrayOf(NfcA::class.java.name))  	/*!<  NFC tech lists */
	private var nfcintent: PendingIntent? = null
....
	override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        setContentView(R.layout.activity_main)
    	nfcAdapter = NfcAdapter.getDefaultAdapter(this)
    	nfcintent = PendingIntent.getActivity(this, 0, Intent(this, javaClass).addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP), 0)
    	cardEmulation = CardEmulation.getInstance(nfcAdapter)
        nfcAdapter?.enableForegroundDispatch(this, nfcintent, null, nfctechfilter)
	}
 
....
   override fun onNewIntent(intent: Intent) {
            super.onNewIntent(intent)
        	tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG)
            cardReading(tag)
	}
.....
	override fun onResume() {
        super.onResume()
	    if (canSetPreferredCardEmulationService()) {
            this.cardEmulation?.setPreferredService(this, ComponentName(this, "com.nooan.cardpaypasspass.NfcService"));
    	}
	}
 
	override fun onPause() {
    	if (canSetPreferredCardEmulationService()) {
            this.cardEmulation?.unsetPreferredService(this)
    	}
        super.onPause()
	}
   private fun cardReading(tag: Tag?) {
    	tagcomm = IsoDep.get(tag)
    	try {
            tagcomm.connect()
    	} catch (e: IOException) {
        	error = "Reading card data ... Error tagcomm: "   e.message
            Toast.makeText(applicationContext, error, Toast.LENGTH_SHORT).show()
        	return
    	}
 
    	try {
        	when {
                commands != null -> readCardWithOurCommands()
            	mChip -> readCardMChip()
            	else -> readCardMagStripe()
        	}
    	} catch (e: IOException) {
        	error = "Reading card data ... Error tranceive: "   e.message
       	 Toast.makeText(applicationContext, error, Toast.LENGTH_SHORT).show()
        	return
    	} finally {
            tagcomm.close()
    	}
	}
	protected fun execute(command: Command, log:Boolean): ByteArray {
    	    val bytes = command.split()
            listLogs.add(bytes.toHex())
    	    val recv = tagcomm.transceive(bytes)
            listLogs.add(recv.toHex())
    	    return recv
	}

Здесь описывается последовательность команд и перебор значений Unpredictable Number в цикле от 0 до 999, в нужную нам команду изменяем Nc на «00000${String.format(»d”, i)}”.replace(“..(?!$)”.toRegex(), “$0 “). И не забываем выполнять GET_PROCESSING_OPTIONS каждый раз перед COMPUTE_CRYPTOGRAPHIC_CHECKSUM иначе чек сумма подсчитываться не будет.

В результате это все можно записать в файл и использовать уже при работе с настоящим терминалом. Здесь же мы получаем Имя и Номер карточки, можем отобразить это на экране.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *