Nfc контроллер

NFC: частотный диапазон, скорости обмена, описание протокола NFCIP

NFC позволяет осуществлять обмен данными между устройствами с относительно высокой скоростью, сравнимой с технологиями BLE и ZigBee, однако эффективные расстояния редко превышают несколько десятков сантиметров (рисунок 1). С одной стороны, это ограничивает область применения персональными устройствами или карточками, с другой – благодаря ограниченному радиусу действия, несколько повышается безопасность обмена данными. Кроме того, в ряде случаев NFC-устройства не нуждаются в источнике питания.

Рис. 1. Примерные области действия беспроводных интерфейсов различных стандартов

Рис. 1. Примерные области действия беспроводных интерфейсов различных стандартов

Области применения NFC на сегодняшний день включают в себя:

  • безналичные платежи;
  • оплату проезда в муниципальном транспорте;
  • системы учета времени и контроля исполнения;
  • системы идентификации и контроля доступа;
  • интерактивные стенды и постеры;
  • настройка совместной работы Bluetooth или Wi-Fi-устройств.

https://www.youtube.com/watch?v=ytcopyright

Bluetooth и Wi-Fi-интерфейсы стали практически стандартными для современных телефонов, смартфонов и планшетных компьютеров, позволяя осуществлять взаимодействие с наушниками, камерами, микрофонами. При большом количестве гаджетов быстрая настройка связи между нужными устройствами может стать проблемой.

К примеру, для подключения устройства к смартфону или планшетному компьютеру по Bluetooth, оно должно быть выведено в режим поиска подключения, как правило, нажатием или удержанием определенной кнопки. Затем необходимо на смартфоне выбрать его из списка доступных устройств, а он может быть достаточно длинным.

NFC позволяет существенно упростить данный процесс – для установления соединения устройств достаточно будет на короткое время поднести их друг к другу. Кроме того, после установления связи возможен автоматический запуск необходимого приложения. NFC Forum™ и Bluetooth SIG совместно разработали документ Bluetooth Secure Simple Pairing using NFC, определяющий формат сообщений для установки соединения (так называемого «спаривания») между Bluetooth-устройствами при посредничестве NFC-устройств.

Предусмотрено два режима установления соединения:

  • прямое соединение, при котором происходит передача параметров соединения, отслеживается процедура установления связи и настройка канала передачи данных между двумя устройствами;
  • косвенное соединение, когда NFC-смартфон или планшет играет роль посредника для передачи параметров соединения между устройством и точкой его подключения (например, между ноутбуком и беспроводной точкой доступа).

Nfc контроллер

Помимо помощи в установке соединения между устройствами, NFC может играть роль простого и дешевого сервисного интерфейса:

  • смартфон или планшет с поддержкой NFC может играть роль универсального дисплея для отображения состояния устройства или роль консоли для его администрирования и настройки;
  • беспроводное подключение не требует специальных разъемов, а использование радиоканала позволяет отказаться от прозрачных окошек, характерных для ИК-портов;
  • возможно бесконтактное обновление прошивки или региональная адаптация изделия непосредственно в упаковке.

Стандарт NFCIP – Near Field Communication Interface and Protocol, – содержит две части NFCIP-1 и NFCIP-2. NFCIP-1 [1] стандартизован в документах ISO/IEC 18092, ECMA 340, ETSI TS 102190. Он определяет два режима обмена – активный и пассивный, определяет полосы частот, типы модуляции и скорости передачи данных (106, 212, 424 кбит/с), процедуры обнаружения устройств и обмена данными.

NFCIP-2 [2] стандартизован в ISO/IEC 21481, ECMA 352, ESTI TS 102312 и определяет механизмы совместной работы устройств стандартов ISO 18092, ISO 14443, ISO 15693, работающих в полосе 13,56 МГц.

Типы NFC-меток

Существует четыре типа меток, описанных NFC-форумом, все они базируются на RFID-протоколах. Это делает NFC метки частично совместимыми со многими уже существующими RFID системами (например, Mifare и FeliCa). Хотя эти более старые системы не поддерживают NDEF, они, однако, могут опознавать NFC метки, которые совместимы с ними.

Например, считыватель RFID, который предназначен для работы с метками Mifare Ultralight, может считать идентификационный номер метки NFC 2 типа, хоть и не может прочитать закодированную NDEF информацию. Есть также пятый тип, который совместим с технологией, но при этом не является частью NFC-спецификации.

Типы 1, 2 и 4 основаны на ГОСТ Р ИСО/МЭК 14443A (состоит из четырёх частей: 1, 2, 3, 4), тип 3 — на ГОСТ Р ИСО/МЭК 18092. Более подробно про каждый из типов можно прочитать под спойлером.

Тип 1:

  • Основан на ГОСТ Р ИСО/МЭК 14443A;
  • Может быть как только для чтения, так и для чтения/записи;
  • Содержит от 96 байт до 2 кбайт памяти;
  • Нет защиты данных от коллизий (прим. — коллизии могут возникнуть; когда два активных источника передают данные одновременно);
  • Примеры: Innovision Topaz, Broadcom BCM20203.

Тип 2:

  • Аналогично типу 1 основан на NXP/PhilipsMifareUltralight метках (ГОСТ Р ИСО/МЭК 14443A);
  • Может быть как только для чтения, так и для чтения/записи;
  • Содержит от 96 байт до 2 кбайт памяти;
  • Скорость взаимодействия 106 кбит/с;
  • Поддержка анти-коллизий;
  • Пример: NXP Mifare Ultralight.

Тип 3:

  • Основан на метках SonyFeliCa (ГОСТ Р ИСО/МЭК 18092 и JIS-X-6319-4) без поддержки шифрования и аутентификации, которая предоставлена спецификацией FeliCa;
  • Может быть либо только для чтения, либо для чтения/записи;
  • Скорость взаимодействия 212 или 424 кбит/с;
  • Поддержка анти-коллизий;
  • Пример: Sony FeliCa.

Тип 4:

  • Аналогично типу 1, тип 4 основан на ГОСТ Р ИСО/МЭК 14443A;
  • Может быть либо только для чтения, либо для чтения/записи;
  • 2, 4 или 8 кбайт памяти;
  • Скорость взаимодействия 106, 212 или 424 кбит/с;
  • Поддержка анти-коллизий;
  • Пример: NXP DESFire, SmartMX-JCOP.

Пятый тип является собственностью NXPSemiconductors и, вероятно, самым распространённым на сегодняшний день MifareClassictag (ГОСТ Р ИСО/МЭК 14443A):

  • Память: 192, 768 или 3584 байта;
  • Скорость взаимодействия 106 кбит/с;
  • Поддержка анти-коллизий;
  • Пример: NXP Mifare Classic 1K, Mifare Classic 4K, Mifare Classic Mini.

Канал связи NFC: роли устройств, режимы подключения

Привлекательность NFC в том, что с использованием этой технологии создание СКУД становится быстрой процедурой, не требующей дополнительных трудовых ресурсов. Все, что нужно иметь:

  • Управляющий компьютер;
  • Считывающий терминал, предназначенный для чтения информации с идентификаторов, которым всегда может быть смартфон, планшет;
  • Идентификаторы. В их роли могут выступать, как привычные карты, так и персонализированные устройства NFC сотрудников.

Чтобы интегрировать NFC пропуск в телефон, достаточно установить на него специальное приложение и персонализировать. После чего сотрудник будет вправе беспрепятственно попадать на рабочее место. При необходимости эмуляция NFC метки может выполняться любое количество раз.

Nfc контроллер

В стандарте определены три возможных режима работы устройств NFC:

  • режим «точка-точка»;
  • режим эмуляции карты;
  • режим считывателя.

Режим «точка-точка» предусматривает двунаправленный обмен данными между устройствами. При этом каждое из устройств может при необходимости инициировать обмен.

https://www.youtube.com/watch?v=ytpress

В режиме эмуляции карты NFC-устройство функционирует как бесконтактная карта/метка.

Считыватель может считывать и записывать данные в NFC/RFID-устройства и бесконтактные карты, а также осуществлять запитку пассивных NCF-устройств.

Начальный загрузчик (bootstrap loader – BSL) позволяет осуществлять доступ к памяти MSP430 во время прототипирования, для обновления прошивки контроллера в готовом изделии и для сервисного обслуживания устройства. В то время как в младших сериях контроллеров семейства MSP430 BSL (рисунок 4) загрузчик располагается в ROM-памяти и доступен только для чтения, в сериях MSP430F5xx и MSP430F6xx загрузчик располагается в защищенной области FLASH-памяти [6]. Это не только обеспечивает ему защиту при стирании памяти, но и позволяет выполнять следующие задачи:

  • использовать различные протоколы и интерфейсы, такие как UART, USB, SPI, I2C, NFC, и sub-1GHz;
  • назначать различные события для запуска BSL, вплоть до нажатия кнопки;
  • добавлять проверку целостности загружаемых или загруженных данных и кода, например, путем вычисления контрольной суммы (CRC);
  • изменять скорость передачи данных.
Рис. 4. Структура начального загрузчика MSP430 BSL

Рис. 4. Структура начального загрузчика MSP430 BSL

Сам загрузчик состоит из трех основных частей:

  • периферийного интерфейса (PI), который принимает и декодирует команды загрузчика, а также содержит драйвера основных интерфейсов – UART и SPI (в частности, можно взаимодействовать с загрузчиком посредством транспондера TRF7970A);
  • интерпретатора команд (CI), который принимает и выполняет команды;
  • BSL API – набора функций, являющегося промежуточным звеном между интерпретатором команд и встроенной памятью контроллера.

С учетом ограничений на размер загрузчика в 2 кбайта, NCF BSL поддерживает только небольшую часть NFC-протокола, необходимую для простых операций передачи данных.

Целевое устройство изначально находится в режиме пассивного ожидания, предусмотренного в TRF7970A при активировании режима Single Device Detection (SDD), что позволяет снизить требования к объему занимаемой памяти. Скорость данных при установлении соединения – 106 кбит/с. Пакет запроса атрибутов и ответ на него (Attribute Request – ATR_REQ и Attribute Response – ATR_RES соответственно) завершают процесс установления соединения.

Скорость прошивки вполне сопоставима со скоростями работы через COM-порт (рисунок 5). (В примере задействованы отладочные платы MSP-EXP430F5529 и MSP-EXP430F5438 с подключенными к ним NFC-платами TRF7970ATB).

Рис. 5. Обновление прошивки посредством NFC BSL

Рис. 5. Обновление прошивки посредством NFC BSL

Алгоритм работы NFC

Nfc контроллер

У NFC, как и у RFID, при обмене есть инициатор и цель, но новая технология позволяет куда больше, чем простой обмен идентификатором и чтение или запись информации цели. Наиболее значимым различием между этими двумя технологиями является то, что у NFC целями часто являются программируемые устройства, такие как смартфоны. Это означает, что можно обмениваться не только статичными данными, но и каждый раз генерировать ответ на запрашиваемую инициатором информацию.

У NFC устройств есть два режима взаимодействия. Если инициатор излучает радиочастотные волны, а цель за счёт инициатора получает питание, то такой режим взаимодействия называют пассивным. При активном режиме у инициатора и цели свои собственные источники питания, и они независимы друг от друга. Данные режимы совпадают с режимами RFID.

NFC устройства также имеют три способа работы. Они могут работать в режиме чтения информации с цели или записи на неё. Они могут эмулировать карты, ведя себя как RFID-метки, когда они в поле другого NFC или RFID устройства. Или они могут работать в режиме peer-to-peer (P2P), в котором они обмениваются данными сразу в обоих направлениях.

Первым главным отличием NFC от RFID является способ взаимодействия peer-to-peer, который реализован с помощью ГОСТ Р ИСО/МЭК 18092. Обмен данными P2P реализуется двумя протоколами — протоколом подуровня управления логической связью (LLCP — logical link control protocol) и простым протоколом обмена данными NDEF (SNEP — simple NDEF exchange format).

Решения NFC от Texas Instruments

Компания Texas Instruments предоставляет широкий ассортимент продукции для коммуникаций ближнего поля, отвечающий практически всем возможным на сегодняшний день запросам рынка [3]. Среди аппаратных решений компании для NFC имеются высокоэффективные и гибкие транспондеры TRF7970A и RF430CL330H, однокристальные системы RF430FRL15xH и системы в корпусе RF430F59XX с процессорными ядрами MSP430.

Архитектура NFC

https://www.youtube.com/watch?v=https:tv.youtube.com

В архитектуре NFC есть несколько уровней. Самый низкий из них — физический, который реализован ЦПУ и другим аппаратным комплексом, через который происходит взаимодействие. В середине находятся данные о пакетах и транспортный уровень, затем формат данных уровней, и в конце программное обеспечение.

На физическом уровне NFC работает по алгоритму, описанному в ГОСТ для RFID (ГОСТ Р ИСО/МЭК 14443-2-2014), где говорится о маломощных радиосигналах частотой 13,56 МГц. Затем идёт уровень, который описывает разбивку потока данных на фреймы (ГОСТ Р ИСО/МЭК 14443-3-2014). Любые радиоконтроллеры, которые используются в телефоне, планшете или подсоединяются к компьютеру или микроконтроллеру, являются отдельными аппаратными компонентами.

Рис. 2. Структурная схема RF430CL330H

Они взаимодействуют с главным процессором посредством одного или нескольких стандартных последовательных протоколов между устройствами: универсальный асинхронный приёмопередатчик (UART), последовательный периферийный интерфейс (SPI), последовательная шина данных для связи интегральных схем (I2C) или универсальная последовательная шина (USB).

Над этим находится несколько протоколов команд RFID, базирующихся на двух спецификациях. NFC чтение и запись меток базируется на оригинальном RFID ГОСТ Р ИСО/МЭК 14443A. Протоколы Philips/NXP Semiconductors Mifare Classic и Mifare Ultralight и NXP DESFire совместимы с ГОСТ Р ИСО/МЭК 14443A. Обмен данными P2P NFC базируется на ГОСТ Р ИСО/МЭК 18092.

Они изображены на рисунке выше на уровне с другими управляющими протоколами, так как они используют одинаковый стандарт.

Транспондеры серии RF430FRL15xH

Микросхемы TRF796xA и TRF7970A [5] являются высокопроизводительными приемопередатчиками диапазона 13,56 МГц со встроенными устройствами формирования пакетов с поддержкой стандартов ISO/IEC 15693, ISO/IEC 18000-3, ISO/IEC 14443A и B (рисунок 3).

Рис. 3. Структурная схема приемопередатчиков TRF796xA, TRF7970A

Рис. 3. Структурная схема приемопередатчиков TRF796xA, TRF7970A

TRF7970A, как наиболее современный представитель семейства трансиверов TRF79xxA, поддерживает NFC-стандарты NFCIP-1 (ISO/IEC 18092) и NFCIP-2 (ISO/IEC 21481).

Встроенные блоки кодирования-декодирования данных, формирования пакетов, а также большой FIFO-буфер позволяют достаточно легко осуществлять взаимодействие по радиоканалу. Детектор наличия поля может активировать выход устройства из спящего режима, оптимизируя тем самым общее энергопотребление устройства. В зависимости от ситуации, режима работы, приложения, TRF79xxA может находиться в одном из семи доступных режимов энергопотребления.

Широкий диапазон допустимых напряжений питания 2,7…5,5 В допускает применение транспондера в устройствах с различными уровнями напряжений – и в устройствах с логическими уровнями 3 В, и с устройствами 5 В. Также возможна работа транспондера при сильно разряженной батарее питания.

Приемопередатчик TRF79xxA позволяет реализовывать различные протоколы обмена для диапазона 13,56 МГц, включая нестандартные.

Основные возможности:

  • поддержка стандартов ISO 14443A, ISO 14443B, ISO 15693, ISO/IEC 18000-3 (Mode 1);
  • диапазон напряжений питания 2,7…5,5 В;
  • встроенный стабилизатор питания (выходной ток до 20 мА);
  • потребление в режиме ожидания – 120 мкА, в режиме сна – менее 1 мкА;
  • параллельный или последовательный (SPI) интерфейс с хост-системой;
  • встроенные блоки формирования пакетов, проверки контрольной суммы, контроля четности;
  • скорость передачи данных – до 848 кбит/с;
  • тактовый выход для хост-контроллера;
  • программируемый антенный усилитель;
  • выходной усилитель с поддержкой OOK- или ASK-модуляции;
  • программируемая выходная мощность – 100 или 200 мВт;
  • прием и декодирование нескольких поднесущих.

Рис. 7. Структура системы в корпусе RF430F5978

RF430FRL15xH [7, 8] является транспондером диапазона 13,56 МГц со встроенным 16-битным малопотребляющим контроллером MSP430 (рисунок 6). Для хранения программы и данных используется энергонезависимая оперативная память технологии FRAM.

Рис. 6. Структурная схема транспондеров серии RF430FRL15xH

Рис. 6. Структурная схема транспондеров серии RF430FRL15xH

FRAM эффективна в NFC-приложениях благодаря высокой скорости работы и низкому энергопотреблению в сочетании с сохранением данных при выключении питания. Энергонезависимость встроенной FRAM-памяти RF430FRL15xH позволяет свободно применять данный транспондер и в приложениях с автономным питанием, и в приложениях с питанием за счет внешнего электромагнитного поля считывателя.

RF430FRL15xH поддерживает обмен данными, установку параметров и конфигурирование посредством беспроводного интерфейса (стандарты ISO/IEC 15693, ISO18000-3), а также при помощи SPI- или I2C-интерфейса.

Встроенный датчик температуры, малопотребляющий 14-битный АЦП, два конфигурируемых аналоговых усилителя позволяют применять RF430FRL15xH в качестве самостоятельного сенсорного узла, обслуживающего как цифровые, так и аналоговые датчики.

Основные возможности транспондера:

  • радиоинтерфейс ISO/IEC 15693, ISO/IEC 18000-3 (Mode 1);
  • выбор источника питания: внешний источник питания или электромагнитное поле;
  • встроенный датчик температуры, интерфейс к резистивному датчику;
  • 16-битный блок вычисления контрольной суммы (CRC);
  • микроконтроллерное ядро MSP430 (2 кбайта FRAM, 4 кбайта ОЗУ, 8 кбайт ПЗУ);
  • напряжение питания – 1,45…1,65 В (ток потребления 260 мкА/МГц, в режимах экономии энергии – 9…15 мкА);
  • несколько источников тактирования (4 МГц, 256 кГц, внешний тактовый сигнал);
  • интерфейсный модуль eUSCI, поддерживающий SPI и I2C;
  • отладочный интерфейс JTAG.

Какой длины может быть NDEF-сообщение?

скуд nfc

NDEF используется для форматирования данных обмена между устройствами и метками. Данный формат типизирует все сообщения, которые используются в NFC, причём не важно для карты это или для устройства. Каждое NDEF-сообщение содержит одну или несколько NDEF-записей. Каждая из них содержит уникальный тип записи, идентификатор, длину и поле для информации, которую нужно сообщить.

Есть несколько распространённых типов NDEF-записей:

  1. Обычные текстовые записи. В них можно отправить любую строку, они не содержат инструкций для цели, но содержат метаданные об языке текста и кодировке.
  2. URI. Такие записи содержат данные об интернет-ссылках. Цель, получившая такую запись, откроет её в том приложении, которое сможет её отобразить. Например, веб-браузере.
  3. Умная запись. Содержит не только веб-ссылки, но и текстовое описание к ним, чтобы было понятно, что находится по этой ссылке. В зависимости от данных записи телефон может открыть информацию в нужном приложении, будь то SMS или e-mail, либо сменить настройки телефона (громкость звука, яркость экрана и т.д.).
  4. Подпись. Она позволяет доказать, что информация, которая была передана или передаётся, достоверна.

Можно использовать несколько видов записей в одном NDEF-сообщении.

Можно представить сообщение как параграф, а записи — как предложения. Параграф — определённая единица информации, которая содержит одно или несколько предложений. Тогда как предложение — меньшая единица информации, которая содержит всего одну идею. Например, можно в виде абзаца сделать приглашения на день рождения и написать в отдельных предложениях данные о дате, времени и месте проведения, а с помощью NDEF-сообщений передать друзьям напоминание об этом событии, где будет текстовое сообщение с описанием события, умную запись с местом и веб-ссылку с тем, как добраться до этого места.

Второе главное различие между NFC и RFID — формат обмена данными NFC (NDEF — NFC data exchange format). NDEF определяет формат данных в сообщениях, которые в свою очередь состоят из NDEF записей. Есть несколько видов записей, о которых будет рассказано более подробно чуть ниже. NDEF делает возможным с помощью программного кода управлять процессом чтения и записи NFC-меток, обмена данными при помощи peer-to-peer и эмулирования карт.

nfc считыватель для скуд

NDEF содержит информацию о байтовом представлении сообщений, которые могут содержать несколько записей. У каждой записи есть заголовок, в котором находятся метаданные (тип, длина и т.д.), и информацию для отправки. Если вернуться к аналогии с параграфом, то параграф формируется из предложений, относящихся к одной теме, так и в NDEF-сообщениях — хорошо, когда все записи относятся к одной тематике.

NDEF-сообщения в основном короткие, каждый обмен состоит из одного сообщения, каждая метка также содержит одно сообщение. Так как обмен NFC данными происходит при касании одного устройства другим или меткой, то будет неудобно передавать в одном сообщении текст целой книги, поэтому длина NDEF-сообщения сопоставима с длиной абзаца, но не целой книги.

NDEF-запись содержит информацию для пересылки и метаданные, как эту информацию интерпретировать. Каждая запись может быть разного типа, о чем объявляется в заголовке этой записи. Также в заголовке описывается какое место занимает запись в сообщении, после заголовка следует информация. На рисунке ниже представлена полная информация о расположении бит и байт информации в NDEF-записи.

Место на информацию в NDEF-записи ограниченно по размерам 2^32-1 байтами, однако можно делать цепочки записей внутри сообщения, чтобы переслать информацию большего размера. В теории нет ограничений на NDEF-сообщения, но на практике размер сообщения ограничивается возможностями устройств или меток, участвующих в обмене информацией.

Если в обмене участвуют только устройства, то длина сообщения будет ограничена вычислительной мощностью самого слабого из устройств, но стоит учесть, что устройства придётся долго держать рядом для пересылки всех данных. При взаимодействии смартфона и карты длина сообщения будет ограничена размером памяти карты.

В общем, обмен данными через NFC достаточно быстрый. Человек подносит мобильное устройство к метке, происходит краткий обмен информацией, и человек идёт дальше. Данная технология не была спроектирована для длительных обменов информацией, потому что устройства в буквальном смысле должны находится в паре сантиметров друг от друга.

Для того чтобы передать большой объем информации, устройства придётся держать друг рядом с другом длительное время, это может быть неудобным. Если нужно длительное взаимодействие между устройствами, то можно воспользоваться NFC для быстрого обмена данными о возможностях устройств и последующего включения одного из более подходящих способов передачи данных (Bluetooth, Wi-Fi и т.д.).

https://www.youtube.com/watch?v=ytdev

Когда телефон на Android считывает NFC-метку, он сначала её обрабатывает и распознает, а затем передаёт данные о ней в соответствующее приложение для последующего создания intent. Если с NFC может работать больше одного приложения, то появится меню выбора приложения. Система распознавания определяется тремя intent, которые перечислены в порядке важности от самой высокой до низкой:

  1. ACTION_NDEF_DISCOVERED: Этот intent используется для запуска аctivity, если в метке содержится NDEF-сообщение. Он имеет самый высокий приоритет, и система будет запускать его в первую очередь.
  2. ACTION_TECH_DISCOVERED: Если никаких activity для intent ACTION_NDEF_DISCOVERED не зарегистрировано, то система распознавания попробует запустить приложение с этим intent. Также этот intent будет сразу запущен, если найденное NDEF-сообщение не подходит под MIME-тип или URI, или метка совсем не содержит сообщения.
  3. ACTION_TAG_DISCOVERED: Этот intent будет запущен, если два предыдущих intent не сработали.

В общем случае система распознавания работает, как представлено на рисунке ниже.

Когда это возможно, запускается intent ACTION_NDEF_DISCOVERED, потому что он наиболее специфичный из трёх. Более того, с его помощью можно будет запустить ваше приложение.

Если activity запускается из-за NFC intent, то можно получить информацию с отсканированной NFC-метки из этого intent. Intent может содержать следующие дополнительные поля (зависит от типа отсканированной метки):

  • EXTRA_TAG (обязательное): объект Tag, описывающий отсканированную метку.
  • EXTRA_NDEF_MESSAGES (опциональное): Массив NDEF-сообщений, просчитанный с метки. Это дополнительное поле присуще только intent ACTION_NDEF_DISCOVERED.
  • EXTRA_ID (опциональное): Низкоуровневый идентификатор метки.

Ниже представлен пример, проверяющий intent ACTION_NDEF_DISCOVERED и получающий NDEF-сообщения из дополнительного поля.

Kotlin

override fun onNewIntent(intent: Intent) {
    super.onNewIntent(intent)
    ...
    if (NfcAdapter.ACTION_NDEF_DISCOVERED == intent.action) {
        intent.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES)?.also { rawMessages -{amp}gt;
            val messages: List = rawMessages.map { it as NdefMessage }
            // Обработка массива сообщений.
            ...
        }
    }
}
@Override
protected void onNewIntent(Intent intent) {
    super.onNewIntent(intent);
    ...
    if (NfcAdapter.ACTION_NDEF_DISCOVERED.equals(intent.getAction())) {
        Parcelable[] rawMessages =
            intent.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);
        if (rawMessages != null) {
            NdefMessage[] messages = new NdefMessage[rawMessages.length];
            for (int i = 0; i {amp}lt; rawMessages.length; i  ) {
                messages[i] = (NdefMessage) rawMessages[i];
            }
            // Обработка массива сообщений.
            ...
        }
    }
}

Kotlin

val tag: Tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG)

считыватель скуд nfc

Tag tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);

Существует несколько методов для создания NDEF-записи: createUri(), createExternal() и createMime(). Лучше использовать один из них во избежание ошибок, которые могут возникнуть при создании записи вручную. Все примеры, представленные ниже, следует отправлять первым сообщением при записи метки, либо сопряжением с другим устройством.

Kotlin

Отладочные средства NFC

Традиционно компания Texas Instruments предлагает ассортимент отладочных и демонстрационных наборов [10].

Для оценки, отладки и проверки NFC-приложений может быть использован набор Dynamic NFC Transponder Evaluation Kit, состоящий из плат RF430CL330HTB Target Board и MSP-EXP430FR5739.

https://www.youtube.com/watch?v=ytpolicyandsafety

Отладочный набор NFCLink Evaluation Kit Bundle содержит в своем составе плату TRF7970ATB Target Board, плату MSP-EXP430F5529 USB Experimenter’s Board, отладочные платы RF430CL330HTB Target Board и MSP-EXP430FR5739 Experimenter Board (рисунок 8).

Рис. 8. Отладочные NFC-наборы TRF7970ATB Target Board (а) и NFCLink Evaluation Kit Bundle (б)

Рис. 8. Отладочные NFC-наборы TRF7970ATB Target Board (а) и NFCLink Evaluation Kit Bundle (б)

Плата TRF7970ATB Target Board может быть использована в паре с одной из отладочных плат контроллеров MSP430™, Tiva™ C или OMAP™.

Пакет ПО NFC Link SW

Рис. 9. Структура программного пакета NFC Link

Рис. 9. Структура программного пакета NFC Link

Основной программной библиотекой для работы с NFC-устройствами серии TRF79xx производства компании Texas Instruments является программный пакет NFCLink) [11, 12]. Его структура изображена на рисунке 9.

NFCLink поддерживает встраиваемые контроллеры Texas Instruments семейств MSP430™, Tiva™ C и OMAP™ и состоит из следующих частей:

  • драйверов для работы с TRF79xx;
  • набора API-функций NFC, RFID;
  • интерфейса с хост-системой (NFC Controller I/F – NCI), включая поддержку операционных систем Android, Linux и Windows® 7 и 8.

Модульная структура пакета NFC Link позволяет легко выбрать нужные компоненты и функции, требуемые в конкретном приложении. Также этот пакет позволяет создавать приложения, выходящие за рамки стандартного NFC-протокола, используя аппаратные возможности транспондеров TRF79хх.

Основная часть NFC Link поставляется в виде предварительно скомпилированных библиотек, а приложение взаимодействия хост-системы с транспондерами TRF79хх (интерфейсные уровни) – в виде исходных текстов.

Использование NFC

Есть множество возможностей использования NFC:

  • Режим эмуляции карты позволяет использовать данную технологию для бесконтактных платежей, например Google Wallet, или для оплаты или получения билетов в общественном транспорте.
  • Есть несколько мобильных приложений, которые позволяют сохранить настройки для мобильного устройства на метках и в дальнейшем использовать их для быстрого изменения каких-либо настроек мобильного устройства (переход в режим виброзвонка, включения или выключения Wi-Fi на мобильном устройстве).
  • На рынке постепенно появляются устройства, поддерживающие NFC, — стереосистемы, телевизоры, которые позволяют создавать пару с телефоном или планшетом для удалённого управления.
  • NFC используется в системе здравоохранения для хранения идентификатора пациента и личных записей.
  • В сфере управления материально-техническими ресурсами можно использовать NDEF записи для хранения информации о месте отправления товаров, об их прохождении различных промежуточных пунктов и тому подобном.

Заключение

Технология NFC добавляет многообещающую функциональность к технологии RFID. Наиболее значимое нововведение — формат обмена данными NFC (NDEF), который предоставляет возможность форматировать обычные данные в одну из четырёх технологий меток NFC. NDEF может быть использован как для обмена данными между устройством и меткой, так и для обмена между устройствами. Это делает NFC пригодным не только как способ идентификации, но и как средство обмена короткими блоками данных.

Более подробно об NFC или NDEF можно почитать в книге Tom Igoe, Don Coleman, and Brian Jepson «Beginning NFC. Near Field Communication with Arduino, Android, and PhoneGap».

Компания Texas Instruments предоставляет аппаратные и программные средства для разработки NFC- и RFID-устройств.

Номенклатура Texas Instruments включает в себя аппаратное обеспечение – микросхемы NFC-приемников, транспондеров, приемопередатчиков, а также программные решения для интеграции NFC-устройств в системы. Все это способствует снижению трудоемкости процесса разработки нового продукта и сокращения времени вывода его на рынок.

https://www.youtube.com/watch?v=upload

Компания КОМПЭЛ, являющаяся официальным дистрибьютором Texas Instruments в России, осуществляет техническую поддержку разработчиков и производителей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *