Nfc standard

Архитектура NFC

Технология NFC основана на технологии радиометок RFID с использованием частоты 13,56 МГц. Типовое рабочее расстояние составляет до 10 см, а скорость передачи данных может достигать 424 кбит/с. Основным преимуществом NFC по сравнению с другими технологиями передачи данных является быстрота и простота использования. На следующем рисунке показано сравнение NFC с другими технологиями обмена данными.

Рисунок 1. Сравнение технологий передачи данных ближнего действия.

Технология NFC поддерживает три режима работы: режим эмуляции карт, режим обмена данными и режим считывания и записи, показанные на следующем рисунке.

Рисунок 2. Семейства протоколов NFC

Nfc standard

В режиме эмуляции карт NFC работает как бесконтактная смарт-карта с радиометкой RFID и с модулем безопасности, что позволяет пользователям безопасно осуществлять покупки. В режиме обмена данными можно передавать данные между двумя находящимися рядом устройствами, поддерживающими NFC. Можно очень быстро и удобно создавать подключения WiFi* или Bluetooth* с помощью NFC, а затем передавать крупные файлы по подключению WiFi или Bluetooth. В режиме считывания и записи можно использовать устройства, поддерживающие NFC, для считывания меток NFC и запуска различных задач.

Все режимы более подробно описаны ниже.

Вместо введения

NFC расшифровывается как Near Field Communication или «ближняя бесконтактная связь», если по-русски. По своей сути это небольшой чип, который может быть встроен в смартфон с целью передачи данных на очень короткие расстояния с весьма мизерной скоростью. NFC очень близка к технологии RFID, которая уже давным-давно используется для пометки продуктов в супермаркетах, но базируется на ее более позднем стандарте ISO/IEC 14443 (смарт-карты) и спроектирована для использования в переносной электронике (читай: смартфонах) и выполнения безопасных транзакций (читай: оплаты покупок).

Как и в случае со стандартом ISO/IEC 14443, дальность действия NFC всего 5–10 см, но разница в том, что чип NFC способен выполнять функцию тега и считывателя одновременно. Другими словами, оснащенный NFC смартфон может быть как смарт-картой (картой метро, например), которую достаточно поднести к считывателю, чтобы расплатиться, так и самим считывателем, что можно использовать, например, для перевода средств между картами-смартфонами и превращения реальных карт с поддержкой стандарта ISO/IEC 14443 в виртуальные.

Но это только «одно из» и наиболее очевидное применение NFC. Благодаря тому, что чип NFC способен передавать данные в обе стороны и не требует аутентификации устройств, его можно использовать как простую и более удобную замену Bluetooth. С помощью NFC, например, можно делиться ссылками, паролями, контактными и другими данными между смартфонами, просто поднеся их друг к другу.

Появившаяся в Android 4.0 технология Beam еще больше расширяет границы применения NFC, позволяя быстро переносить между устройствами целые файлы и папки, что достигается с помощью предварительной аутентификации Bluetooth-устройств по NFC и последующей установки Bluetooth-соединения и отправки файлов.

Еще одна возможность — использование пассивных NFC-тегов. Такие теги в виде небольших наклеек можно приобрести за полдоллара за штуку и перепрограммировать с помощью смартфона. Каждый из них может вмещать в себя 137 байт информации (в случае самого распространенного и дешевого тега Mifire Ultralight C), для считывания которой опять же достаточно просто поднести смартфон.

В тег можно записать пароль от домашнего Wi-Fi и приклеить на роутер. Или кодовое слово, на которое будет реагировать смартфон. Можно организовать автоматический запуск навигатора при установке смартфона в держатель в автомобиле или включение бесшумного и энергосберегающего режимов, когда телефон находится на прикроватной тумбочке. Небольшой список покупок в 137 байт тоже вполне вместится.

Nfc standard

В этой статье мы поговорим обо всех возможных применениях NFC на практике, но так как в нашей стране оплата покупок с его помощью внедрена примерно нигде, то речь пойдет преимущественно об автоматизации на основе меток.

Поддержка в смартфонах

Первым телефоном с интегрированной поддержкой NFC был Nokia 6131, выпущенный еще в 2006 году. Тогда встроенный NFC-чип был всего лишь игрушкой для демонстрации возможностей созданной два года назад технологии. Смартфон был оснащен софтом для считывания NFC-меток, но ввиду их тогдашней дороговизны и почти нулевой популярности технологии ни на какое серьезное применение данная особенность смартфона не претендовала.

После некоторого затишья популяризацией NFC занялась компания Google, выпустившая в 2010 году смартфон Samsung Nexus S и приложение Google Wallet, которое позволяло расплачиваться виртуальными кредитками, используя NFC. На следующий год Google стала ведущим участником NFC Forum и представила Android 4.0 и основанный на нем смартфон Samsung Galaxy Nexus, который теперь мог похвастаться наличием той самой функции Beam. Позже появился Nexus 4, и наконец начали подтягиваться другие производители.

Сегодня NFC оснащаются почти все выпускаемые смартфоны. Соответствующий модуль есть даже в сверхбюджетных чипах Mediatek, так что большая часть новых китайских смартфонов стоимостью 5000 рублей тоже им оснащены. В любом случае присутствие чипа NFC легко проверить по наличию пункта «Беспроводные сети -{amp}gt; NFC» в настройках.

Введение в разработку приложений для Android, поддерживающих NFC

Android поддерживает NFC в двух пакетах: android.nfc и android.nfc.tech.

NfcManager: Можно использовать устройства Android для управления всеми указанными адаптерами NFC, но, поскольку в большинстве случаев устройства Android поддерживают только один адаптер NFC, вызов NfcManager обычно осуществляется непосредственно с getDefaultAdapter для получения определенного адаптера.

NfcAdapter: Работает в качестве агента NFC (наподобие сетевого адаптера в компьютере), с помощью которого сотовые телефоны получают доступ к оборудованию NFC для запуска обмена данными NFC.

NDEF: Стандарты NFC определяют общий формат данных. Он называется NFC Data Exchange Format (NDEF) и используется для хранения и передачи различной информации — от объектов с типом MIME до сверхкратких документов, передаваемых по радио, например URL-адресов. NdefMessage и NdefRecord являются двумя видами NDEF для форматов данных, определенных форумом NFC. Они используются в нашем образце кода.

Tag: Согласно определению Android, этот класс представляет пассивные объекты, такие как радиометки, карточки и т. п. Когда устройство обнаруживает метку, Android создает объект tag и помещает его в объект Intent, который отправляется соответствующему действию.

Пакет android.nfc.tech также содержит множество важных подклассов. Эти подклассы обеспечиваю доступ к функциям технологии радиометок, в том числе к операциям чтения и записи. В зависимости от типа используемой технологии эти классы разделяются на различные категории, например NfcA, NfcB, NfcF, MifareClassic и пр.

NDEF_DISCOVERED, TECH_DISCOVERED, TAG_DISCOVERED

Мы используем здесь тип intent-filter для обработки всех типов от TECH_DISCOVERED до ACTION_TECH_DISCOVERED. Файл nfc_tech_filter.xml используется для всех типов, определенных в файле TAG. Подробные сведения см. в документации Android. На приведенном ниже рисунке показано действие соответствующего процесса при обнаружении телефоном радиометки.

Nfc standard

Рисунок 6. Процесс работы при обнаружении метки NFC

Пример: Разработка приложения для чтения и записи информации на базе NFC

Следующий обратный вызов класса переходов показывает функцию считывания. Если класс переходов вещания системы равен NfcAdapter.ACTION_TAG_DISCOVERED, то можно прочитать информацию в радиометке и отобразить ее.

@Override
	protected void onNewIntent(Intent intent){
		if(NfcAdapter.ACTION_TAG_DISCOVERED.equals(intent.getAction())){
		mytag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);  // get the detected tag
		Parcelable[] msgs =
intent.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);
			NdefRecord firstRecord = ((NdefMessage)msgs[0]).getRecords()[0];
			byte[] payload = firstRecord.getPayload();
			int payloadLength = payload.length;
			int langLength = payload[0];
			int textLength = payloadLength - langLength - 1;
			byte[] text = new byte[textLength];
			System.arraycopy(payload, 1 langLength, text, 0, textLength);
			Toast.makeText(this, this.getString(R.string.ok_detection) new String(text), Toast.LENGTH_LONG).show();
					}
	}

Следующий код показывает функцию записи. Перед определением значения mytag нужно узнать, обнаружена ли радиометка, а затем записать информацию в mytag.

If (mytag==Null){
	……
}
else{
……
write(message.getText().toString(),mytag);
……
}
	private void write(String text, Tag tag) throws IOException, FormatException {
		NdefRecord[] records = { createRecord(text) };
		NdefMessage  message = new NdefMessage(records);
// Get an instance of Ndef for the tag.
		Ndef ndef = Ndef.get(tag); // Enable I/O
		ndef.connect(); // Write the message
		ndef.writeNdefMessage(message); // Close the connection
		ndef.close();
	}

В зависимости от информации, прочтенной с метки, можно выполнять и другие действия: запускать различные задачи, открывать веб-сайты и т.п.

Мы используем карту Mifare для теста считывания карты и используем тип TAG карты MifareClassic. Карта MifareClassic широко используется в самых различных целях: как удостоверение личности,для оплаты проезда на общественном транспорте и т. п. Память традиционной карты MifareClassic разделяется на 16 секторов, каждый сектор включает 4 блока, а каждый блок может содержать 16 байт данных.

Последний блок в каждой области называется трейлером, он используется главным образом для сохранения локального ключа блока для чтения и записи данных. Он содержит два ключа, A и B, длиной по 6 байт каждый, значение по умолчанию обычно равно FF или 0 для всего ключа согласно определению MifareClassic.KEY_DEFAULT.

Nfc standard

При записи на карту Mifare нужно сначала получить правильное значение ключа (для защиты). Перед тем как пользователь получит возможность чтения и записи данных в эту область, нужно пройти проверку подлинности.

Пишем данные

Для записи данных будем использовать NFC TagWriter. Пользоваться приложением довольно просто. Запускаем, тапаем по пункту Create, write and store, выбираем New, далее выбираем тип записываемых данных. Наиболее полезные типы: контакт, простой текст, телефонный номер, данные для Bluetooth-соединения, URI и приложение. В списке есть даже закладка веб-браузера и email-сообщение, но для чего они нужны, не совсем понятно.

Главный экран NFC TagWriter
Главный экран NFC TagWriter

Далее заполняем необходимые поля (например, адрес веб-сайта в случае с URI), нажимаем Next и попадаем на экран опций (скриншот «NFC TagWriter: опции сообщения»). Здесь можно указать приложение, которое будет запущено после прочтения метки (Add launch application) и установить защиту на перезапись сторонним устройством (Apply Soft Protection).

NFC TagWriter: опции сообщения
NFC TagWriter: опции сообщения

Вновь нажимаем Next и подносим смартфон к тегу. Вуаля, наши данные в нем. Теперь их можно прочитать любым смартфоном с поддержкой NFC. Но что это в конечном итоге дает?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *