RFID-метка: что это такое, виды, цены, применение в торговле и логистике

Что такое rfid метка?

Пассивные радиометки многие эксперты относят к самым востребованным. Такие идентификаторы используются в торговле (например, как стикеры, приклеиваемые к продаваемым товарам), в транспортной индустрии (можно отметить, что именно пассивные радиометки встраиваются в билеты московского метрополитена), в индустрии безопасности (пассивные метки встраиваются в карточки доступа на те или иные режимные объекты на предприятиях, в государственных учреждениях).

Пассивные метки могут работать в разных диапазонах — ВЧ (совместимые с ним метки — наименее «дальнобойные» и подлежат считыванию с расстояния не более 2 м), УВЧ, СВЧ (имеют больший радиус сканирования — до 10 метров). Маленькие по площади метки, как правило, рассчитаны на считывание с меньших расстояний, чем более крупные идентификаторы.

Типичный форм-фактор пассивной радиометки — стикер, изначально размещенный на бумажной либо пластиковой ленте, которая обычно поставляется рулонами. Таким образом, пассивные устройства, как правило, закупаются оптом, а затем — программируются и приводятся «в товарный вид» на RFID-принтерах, размещенных на предприятии.

Активные радиометки, благодаря наличию встроенного элемента питания, относятся как раз к тем устройствам, которые приспособлены к сканированию на наибольших расстояниях — до нескольких сотен метров. Активные метки заметно больше пассивных, у них больше памяти и, как правило, есть дополнительные электронные компоненты.

При этом, источник питания в активной метке — это не перезаряжаемый аккумулятор, а фактически батарейка, которая может разрядиться, после чего метка перестанет выполнять свою основную функцию. Поэтому, при планировании внедрения в RFID-инфраструктуру активных меток, предприятие должно учитывать, что время их работы ограничено емкостью встроенной батареи.

При этом, многие модели пассивных меток имеют заменяемую батарею — это, безусловно, плюс. Также следует отметить, что в источник питания на радиометке способен работать, как правило, не менее 3-5 лет — во многих случаях этого более чем достаточно для решения большинства производственных задач. Некоторые модели идентификаторов имеют батарею, рассчитанную на работу в течение 10 лет.

Не считая, собственно, того факта, что активная метка приспособлена к систематической передаче радиосигнала на передатчик, она имеет следующие преимущества перед пассивным RFID-устройством:

  • возможность передачи сигнала большой мощности — который может пройти, к примеру, сквозь толщу воды или большое металлическое препятствие;
  • интеграцию с различными сенсорами (температуры, влажности, освещенности и иных), которые могут оказаться полезными в производственном процессе.

Информацию, записанную на сенсоры, радиметка, разумеется, также может передавать на сканер для последующей обработки.

Активно-пассивные метки — устройства, которые по своему внешнему виду и характеристикам больше похожи, скорее, на пассивные метки, но при этом они оснащены встроенным элементом питания. Благодаря этому, значительно увеличивается дальность их возможного считывания.

  1. По типу памяти.

Рассматриваемый критерий предполагает деление RFID-устройств:

  • на те, которые обладают памятью для однократной записи данных на заводе;
  • на те, которые обладают памятью для однократной записи данных самим предприятием;
  • на те, которые оснащены памятью, которая в преобладающей степени или полностью приспособлена к многократной записи данных (заводом или предприятием).
  1. По частоте использования.

Так, выделяют метки, функционирующие:

  • на низкой частоте (на практике — в диапазоне 125-134 кГц);
  • на высокой частоте (13,56 МГц);
  • на ультравысокой частоте (860–960 МГц, в России разрешено их использование в диапазоне 863–868 МГц);
  • на сверхвысокой частоте (3-30 ГГц).

Низкочастотные метки, как правило, имеют наименьшую величину (благодаря которой могут выпускаться в форм-факторах таких размеров, при которых радиометка неощутима при имплантации в организм человека или животного), но при этом рассчитаны они на считывание с самых близких расстояний.

Высокочастотные метки можно отнести к числу самых универсальных, поскольку они:

  • имеют относительно небольшую себестоимость;
  • не имеют практически значимых юридических ограничений в использовании;
  • хорошо регулируются на уровне международных и национальных стандартов (в том числе тех, в соответствии с которыми может быть осуществлена криптографическая защита данных, записанных на метку).

При этом, высокочастотные метки также не относятся к числу тех, что имеют большой радиус считывания, и это накладывает заметные ограничения на их применение. Кроме того, высокочастотные волны чувствительны к влажности воздуха, наличию металлических препятствий на пути волны к считывателю.

В свою очередь, СВЧ и УВЧ-метки, как мы уже знаем, имеют наибольшую дальность считывания и наименьшую чувствительность к средам.

  1. По форм-фактору.

5.1. Этикетки.

По существу, это самый простой технологический тип радиометок (но в то же время самый универсальный). Этикетка подлежит наклеиванию или прикреплению иным дешевым способом на идентифицируемый объект.

5.2. Защищенные.

Такие метки размещены в прочном (часто — герметичном) корпусе, который защищает их от воздействия агрессивных сред (характерных, к примеру, для промышленных условий использования меток).

5.3. Биологические метки.

Рассчитаны они на размещение на животных — в целях контроля их перемещения, учета (в сельском хозяйстве — которое, как мы уже знаем, может быть одной из лидирующих по темпам внедрения RFID-инфраструктуры отраслей), поведения, месторасположения (если, например, речь идет об изучении редких видов зоологами).

5.4. Карты, браслеты, брелки — и прочие переносимые персональные идентификаторы.

Такие метки предназначены для идентификации человека (в качестве работника, клиента, пассажира).

5.5. Метки в виде крепежа.

Популярны радиометки, исполненные в виде элементов крепежа — например, болтов. Чип с зашифрованными данными — основная часть метки, в этом случае монтируется в головку болта или винта — который, в свою очередь, можно разместить на подходящем объекте незаметно (он будет неотличим от штатных болтов) — например, на транспортном контейнере.

Существует также классификация радиометок по техническому стандарту. Данный критерий предполагает выделение десятков разновидностей идентификаторов, однако, среди них можно выделить те, что соответствуют неоспоримо лидирующему (в ключевых сегментах применения RFID-инфраструктуры)

Ознакомимся с особенности одного из ключевых стандартов RFID подробнее. На его примере мы можем рассмотреть основные возможности современных RFID-меток в распространенных разновидностях, узнаем, какие ресурсы могут быть «зашиты» в типичный идентификатор такого типа.

Если говорить о пассивных метках, то их имеет смысл классифицировать как раз по рабочей частоте (поскольку именно она во многом определяет область применения идентификатора). Так, на российском рынке присутствуют:

  1. Низкочастотные идентификаторы:
  • типа «диск» (имеющие круглую форму) — стоимостью 20-80 рублей (примеры — Em-Marine Zorio D19, D25);
  • типа «диск самоклеящийся», который можно купить примерно за 70 рублей (Em-Marine IL-07EE, Temic IL-07TE);
  • типа «диск с отверстием» — за 80 рублей (Em-Marine D 35 x 4 x 3,8), дороже выполненные из пластика и эпоксида — примерно 200 рублей (Em-Marine D52 8 x 8 x 5);
  • типа «диск термостойкий» — за 200 рублей (Em-Marine D15);
  • типа «болт» или «винт» — за 190 рублей (Em-Marine D6, D8);
  • типа «капсула» (Em-Marine D 4,5 x 15,5), «колба» (Em-Marine D 3 x 15) — за 170-200 рублей;
  • типа «метка для птиц» — за 160 рублей (Em-Marine EBlue Iron Logic).

Важный нюанс: Em-Marine – это не наименование фирмы-производителя, а самый популярный в России формат низкочастотных пассивных RFID-меток. Технически он может выпускаться несколькими разными производителями — но благодаря стандартизации конкретные модификации радиометок практически не будут отличаться по своим характеристикам и качеству работы.

  1. Высокочастотные идентификаторы:
  • типа «наклейка» за 90-100 рублей (I-Code 86 x 54);
  • типа «ярлык» за 170 рублей (I-Code 10 x 28);
  • эпоксидные для идентификации металлических изделий за 270 рублей (Mifare 1K 31 x 45 x 3,5).

В свою очередь, отметим, что I-Code – это бренд-производитель радиометок, а Mifare – торговая марка, принадлежащая фирме NXP Semiconductors (одному из крупнейших производителей чипов для RFID-меток), и, по существу, еще один популярный стандарт радиометок.

  1. Идентификаторы, работающие в диапазоне УВЧ:
  • типа «особо прочный» (с отверстиями под крепеж) — с ценой порядка 900-1000 рублей (Nedap UHF Heavy Duty Tag);
  • типа «износостойкая на металл» — стоимостью порядка 550 рублей (Confidex Ironside UHF);
  • типа «на лобовое стекло» — стоимость порядка 320 рублей (Nedap UHF Windshield Tag).

При этом, среди УВЧ-меток встречаются и недорогие решения типа «наклейка» — ценой около 25 рублей (ESMART M50x50 UHF). Встречаются также решения типа «на лобовое стекло» ценой около 90 рублей (Confidex Windshield Label UHF).

  • Пассивные – транспондеры с идентификационным номером без встроенного источника энергии, передают сигнал методом модуляции отражённого сигнала несущей частоты. Антенна считывателя излучает сигнал несущей частоты и принимает отражённый от метки модулированный сигнал. Дальность действия высокочастотных меток составляет от 1 сантиметра до 2 метров, а ультравысокочастотных (860—960 МГц) и сверхвысокочастотных (2,4-2,5 ГГц) – от 1 до 10 метров. Срок эксплуатации меток этого типа практически неограничен.
  • Активные – транспондеры увеличенных размеров с собственным источником питания, которые не зависят от энергии считывателя и читаются на дальнем расстоянии (до 300 метров). Они могут оснащаться дополнительной электроникой, например, сенсорами для мониторинга температуры, влажности и прочих внешних факторов. Такие метки способны хранить больший объём информации для отправки приёмопередатчиком, они являются самыми надежными и высокоточными. Активные метки способны генерировать выходной сигнал большего уровня, чем пассивные, и могут использоваться не только в воздухе, но и в более агрессивных средах: воде, телах людей и животных, металлах (корабельные контейнеры, автомобили). В противовес всем этим достоинствам, для активных меток свойственны существенные недостатки, которые ограничивают их повсеместное применение: они достаточно дорогие, а у их собственных батарей ограничено время работы (до 10 лет).
  • Полупассивные (полуактивные) – чипы небольших размеров с собственным источником энергопитания (батареей). Дальность их действия зависит только от чувствительности приёмника считывателя.
Читайте ещё про NFC:  Nfc rfid

Где используются rfid-метки: сферы применения iot

  • приложения контроля доступа;
  • приложения контроля и учета рабочего времени;
  • идентификация транспортных средств;
  • автоматизация производства;
  • автоматизация складской обработки.
  • Большое расстояние считывания
  • Независимость от ориентации метки и ридера
  • Скорость и точность идентификации
  • Возможность работы через материалы, пропускающие радиоволны, нет необходимости в прямой видимости
  • Возможность считывания метки с двигающегося объекта
  • Возможность хранения дополнительной информации на метке и ее перезаписи
  • Сложность подделки RFID-меток
  • Одновременное чтение нескольких меток (при наличии антиколлизионной фунции)
  • Устойчивость к воздействиям окружающей среды, длительный срок эксплуатации

Современные RFID системы находят применение в сферах о которых еще несколько лет назад было сложно и помыслить.

Сравнение систем идентификацииRFID не единственная система идентификации. Технология
штрихового кодирования появилась около 30 лет назад и была первой, и самой массовой системой автоматической идентификации. Третья технология — это оптическое распознавание текста
OCR, эта технология получила наибольшее распространение в системах распознавания автомобильных номеров.

Попытаемся сравнить недостатки и преимущества всех трёх систем идентификации. Ведь именно потребность в идентификации определяет возможности для применения RFID технологии в реальной жизни.

Теперь когда преимущество RFID неоспоримо, давайте пройдёмся по тем сферам RFID уже активно вытесняет традиционные системы идентификации и немного по тем сферам где будет вытеснять в ближайшее время.

Защита товара от подделокПри производстве или упаковке товара маркируйте его специ­альными радиометками, чтобы покупатели могли отличить ори­гинал от подделок.

Уникальную встроенную саморазрушающуюся метку подделать невозможно, поэтому сам факт ее наличия гарантирует подлинность товара с вероятностью 100%. К уникальному номеру метки в базе данных может быть привязана любая информация, например информация о том когда и где произведен данный товар. Даже если идентификатор удастся подделать в базе данных он присутствовать не будет. Что будет означать что это подделка.

Никакие другие технологии защиты оригинальных товаров из тех, что используются сегодня, не работают так эффективно.

Для покупателей есть возможность проверять подлинность товара, с помощью смартфона. И получать полную информацию о товаре.

В видео рассказано о глобальной системе отслеживания оригинальной меховой продукции.

Общественный транспортОдной из наиболее привлекательных возможностей для использования RFID систем, особенно для бесконтактных карт, является их применение в общественном пассажирском транспорте.

Транспортные организации по всему миру часто работают с большими убытками, иногда дефицит может составлять до 40% от оборота компании, и этот дефицит как правило покрывается за счет государственных средств. Поэтому в данном случаем мы имеем как минимум двух интересантов для решения проблемы высокой себестоимости. Во Франции государство так сильно хочет изменить ситуациию с убыточностью железнодорожных компаний, что готова смирится с

Поэтому, транспортным компаниям необходимо разработать долгосрочные меры по сокращению дефицита путем сокращения расходов и повышения рентабельности.

Одним из наиболее серьезных средств в борьбе с издержками может стать широкое использование бесконтактных RFID карт в качестве электронных средств оплаты проезда. Именно улучшение организации оплаты проезда предоставляет наибольшие перспективы для повышения эффективности работы транспортных компаний.

Розничная торговляТехнология идентификации продаваемых товаров с помощью штрих-кода активно применяется в торговле уже несколько десятков лет.

Технология RFID которая приходит ей на смену обладает рядом преимуществ, самый главное из которых — бесконтактная, и высокоскоростная идентификация.

• Отгрузку товаров со склада• Приемку товаров в магазине • Инвентаризация товара в магазине

ПроизводствоПрименение RFID в розничной торговле, имеет массу плюсов, но прежде чем продать что нибудь, нужно это произвести. Процесс производство в большинстве случаев не менее сложен чем процесс продажи.

Основные возможности применения RFID для оптимизации производства это — снижение издержек и улучшения безопасности.

Ведущие производственные компании уже используют RFID для отслеживания складских запасов полуфабрикатов, готовой продукции, инструмента и многого другого, местоположения транспортных средств и рабочих.

Сфера услуг

Сфера услуг многогранна, но ее многогранней возможности автоматизации которые появляются с приходом RFID технологии. Уже реализованы проекты по по автоматизации химчисток, прачечных, предприятий предлагающих услуги аренды.

Внедрение RFID позволяет добится — автоматизации процессов приёмки, сортировки и отгрузки объектов имущества, отслеживания их местонахождения, оптимизации загрузки производственных мощностей и снижения влияния «человеческого фактора».

СкладRFID на складе позволяет снизить потери паллет и других транспортных товаров многоразового использования, а также автоматизировать управление ими.

Позволяет отслеживает местоположение как тары таки самих товаров.

Медицинские учрежденияБольницы используют основанную на радиочастотной идентификации систему получения информации о пациенте (данные пациента, диагноз, аллергии и т.д.) в реальном времени. Для этого используется одеваемый на руку пациента одноразовый неснимаемый браслет.

Кроме этого клиники применяют такие решения, чтобы управлять размещением пациентов, отслеживать использование медицинского оборудования и автоматизировать другие рабочие процессы.

Библиотеки

Системы RFID в библиотеках используется для ускорения выдачи и приема книг, а также для совершенствования системы безопасности. Автоматизация процессов выдачи, возврата и выбытия книг из библиотечного фонда позволяет существенно сократить, время обслуживания читателей.

RFID система выполняет не менее важную охранную функцию: при выходе посетитель проходит рядом со считывателем, который получает данные с каждой метки, а программное обеспечение проверяет, все ли книги были зарегистрированы к выдаче. Если нет, на пункте охраны раздается звуковой сигнал и мигает красная лампочка, а программа показывает, какая именно книга или материал вызвали срабатывание системы.

Следует отметить, что окончательный проект включает в себя все исправления ошибок и некоторые дополнения, которые были сделаны на стадии создания прототипа. Ниже будет подробная информация о внесенных изменениях. Чтобы уберечь читателя от возгласа «многабукв, ниасилил!», сразу приведу окончательный вариант.

Вся схема в PDF.Схема в формате gschem.

Технология RFID используется там, где требуется автоматизированный контроль перемещения объектов, интеллектуальный учет большого количества продукции, безошибочность, скорость и надежность эксплуатации в жестких условиях окружающей среды [2]:

  • автоматизация технологических процессов на производстве;
  • мониторинг перемещения товаров в складской логистике ускоряет процессы приема и отгрузки, повышает надежность и прозрачность операций;
  • защита от воровства и хищений продукции;
  • в индустрии потребительских товаров и розничных продаж радиочастотные системы отслеживают путь товара от производителя до прилавка, чтобы вовремя выставить его на полку в том магазине, где на него высокий спрос;
  • в библиотеках RFID помогает быстро найти и выдать читателю нужные книги, предотвратить хищения, сократить очереди и упростить инвентаризацию;
  • в производстве одежды, в частности, для маркировки шуб и других меховых изделий – каждый товар идентифицируется контрольным знаком со встроенной RFID-меткой.
Интеграция RFID-считывателя и смартфона

Преимущества радиочастотной технологии [1]:

  • возможность перезаписи информации;
  • независимость от ориентации транспондера относительно считывателя;
  • отсутствие требований к прямой видимости;
  • возможности считывания на большом расстоянии (до 300 метров);
  • больший объём хранения данных;
  • считыватели могут одновременно считывать более тысячи меток в секунду, избегая коллизий;
  • устойчивость к влаге и загрязнениям;
  • длительный срок эксплуатации;
  • многоцелевое использование;
  • высокая степень безопасности за счет уникального идентификатора и алгоритмов шифрования данных.

Недостатки радиочастотной технологии [1]:

  • чувствительность к механическим повреждениям;
  • высокая стоимость;
  • сложность самостоятельного изготовления;
  • возникновение помех при электромагнитном воздействии;
  • небольшой объем технических решений;
  • недостаточная открытость выработанных стандартов.
Типичная радиочастотная метка — транспондер

Источники

Применение радиметок в торговле можно разделить на 2 основные области:

  1. Товарно-складской учет.

Предполагается оснащение товарной тары либо отдельных позиций метками, которые позволяют отследить перемещение объекта со склада на прилавок, а также его передачу покупателю. В теории метки — при условии достаточной экономической рентабельности их применения, могут заменить штрих-коды в базовых учетных операциях.

Внедренная на ключевых участках учетного процесса RFID-инфраструктура на торговом предприятии может привести к значительному повышению эффективности работы сотрудников:

  • на складе (в части контроля над приемкой, перемещением товаров со склада на витрины и иные подразделения торгового предприятия);
  • на различных участках, для которых характерна регулярная инвентаризация товаров (это может быть как склад, так и витрина или торговый зал либо иное подразделение торгового предприятия);
  • на кассе (при отпуске тех типов товаров, которые учитываются с применением RFID-меток — например, прикрепленных на товар в соответствии с законодательством о маркировке).
Читайте ещё про NFC:  Как пополнить Тройку с карты Сбербанк

Дешевые считыватели и мусорный сигнал

  • RFID-Считыватель;
  • RFID-Метка;
  • Программное обеспечение.

Считыватель занимается генерированием и распространением электромагнитных волн в окружающее пространство. Данный сигнал принимается RFID-меткой, которая создает обратный сигнал, улавливающийся антенной считывающего устройства, затем полученная информация расшифровывается и обрабатывается электронным блоком.

Электронные метки бывают активными и пассивными. Активные идентификаторы снабжены собственным источником питания, дальность считывания таких устройств не зависит от энергии ридера. Пассивные метки не имеют своего источника питания, потому питаются от энергии электромагнитного сигнала, который распространяет считыватель. Дальность идентификации данных меток напрямую зависит от энергии, которую излучает ридер.

Каждый из этих видов устройств характеризуется своими преимуществами и недостатками. Пассивные метки хороши своим большим сроком эксплуатации, а также дешевизной в сравнении со своим активным аналогом. К тому же, пассивные идентифицирующие устройства не нуждаются в замене элементов питания. Недостатком устройства является необходимость в использовании более мощных считывателей.

Активные идентифицирующие устройства характеризуются высокой дальностью считывания информации в отличие от пассивных меток, а также возможностью распознавать и считывать данные при движении электронной метки на высокой скорости относительно считывающего устройства. Недостатком активных меток является высокая цена и громоздкость.

Типы RFID-идентификаторов в зависимости от рабочей частоты:

  • (ВЧ) Высокочастотные RFID-метки, работающие на частоте 13,56 МГц;
  • (УВЧ) Ультравысокочастотные RFID-метки, работающие в диапазоне частот 860-960 МГц. Данный диапазон используется в России, в Европе RFID-метки работают в диапазоне 863-868 МГц.

Способы записи информации на идентификатор (метку):

  • ReadOnly-устройства — идентификаторы, на которые можно записать информацию лишь единожды, дальнейшее изменение или удаление информации невозможно;
  • WORM-устройства — RFID-метки, которые позволяют однократно записывать и многократно считывать данные. Изначально в памяти устройства не хранится никакой информации, все необходимые данные вносит пользователь, но после записи перезаписать или удалить информацию невозможно;
  • R/W-устройства – идентификаторы, которые позволяют многократно считывать и записывать информацию. Это наиболее прогрессивная группа устройств, так как подобные метки позволяют перезаписывать и удалять ненужную информацию.

Технология RFID широко используется в производстве, розничной торговле, системах управления и контроля доступом, системах защиты от подделки документов и других областях. Она позволяет экономить время и сводит к минимуму использование ручного труда.

В логистике радиометка может быть применена в целях:

  1. Контроля перемещения транспортных средств и людей на различных участках управления потоками.

Данная опция позволяет упорядочить производственный процесс, исключить или свести к минимуму неэффективные действия работников, отвечающих за решение тех или иных задач на производстве. При необходимости она дополняется контролем доступа — который также может быть осуществлен с применением радиометок на ТС (либо переносимых работниками).

  1. Оперативной идентификации транспортных средств.

Она может быть осуществлена, к примеру, для определения типа груза, за которым явился работник, находящийся за рулем «отсканированного» автомобиля. Этот груз — предназначенный для перевозки на данном целевом ТС, быстро готовится к отправке, как только транспондер, размещенный на автомобиле, сработает при его появлении в той или иной контролируемой зоне.

  1. Оперативной или плановой идентификации грузов.

Производиться такая идентификация может в целях учета грузов (на операциях приемки или отгрузки), контроля их перемещения на различных участках управления потоками, при инвентаризациях и прочих сверках.

Обычный для современной логистической компании сценарий применения RFID-меток может состоять из следующих основных этапов:

  1. Первичной идентификации транспортных средств, прибывших в контролируемую зону.

Это могут быть принадлежащие логистической фирме (или ее подрядчикам) автомобили, которые привезли тот или иной груз на терминал. Первичная идентификация осуществляется посредством размещения RFID-метки на лобовом стекле машины (или в ином ее месте, на котором размещенная метка легко считывается). Ответственные работники, получив сигнал, что приехала машина (с таким-то грузом) готовятся встретить ее должным образом в оперативные сроки.

  1. Мониторинга производственных операций, которые осуществляются с задействованием прошедшего идентификацию (установку RFID-метки) транспортного средства.

Так, может отслеживаться перемещение машины в зоны разгрузки, погрузки (если предполагается последующая перевозка груза из текущего терминала в другой или на иной адресат). Непосредственное отслеживание может быть осуществлено с помощью разных типов считывателей — стационарного (размещаемого на различных участках производственных помещений), или мобильного (размещенного на спецтехнике — кране, перегружателе).

  1. Проверки комплектности производственных операций, которые требовалось осуществить водителю ТС, что прошло идентификацию с помощью радиометок.

Если выяснится, что автомобиль произвел все необходимые производственные операции (что надо — выгрузил, загрузил, отметился, где требуется), то санкционируется его дальнейшее использование (выезд с контролируемой зоны). Если какие-то операции не произведены, то инициируется их повторное произведение (либо пропуск — если их невыполнение не критично).

Очевидно, что применение радиометок в логистике — в рамках рассмотренной нами схемы или при задействовании альтернативных подходов, предполагает значительное ускорение процесса управления грузовыми потоками — в сравнении со схемой без RFID-меток (то есть, с ручной идентификацией ТС).

Ближайший аналог радиометок — это штрих-код (и его аналоги — например, QR-код). Он также может быть применен в целях идентификации того или иного объекта на выбранном участке производственного цикла. При этом, «радиометки» и штрих-коды крайне сильно различаются (не считая, очевидно, технологических различий между ними):

  1. По приспособленности к применению в качестве носителя данных, который может быть прочитан при наличии физических препятствий между ним и сканирующим устройством.

Штрих-код должен быть обязательно в зоне видимости сканера. Радиометка может быть прочитана, даже если между ней и радиосканером есть какое-то препятствие, создающее помехи прямой видимости (понятное дело, небольшое — но все же оно может быть).

  1. По объему кодируемых данных.

Современные радиометки способны размещать у себя в памяти данные объемом до нескольких мегабайт. Обычные штрих-коды — разве что, десятки байт. Более технологичные QR-коды — как правило, не более 4 килобайт (что также не сопоставимо с емкостью RFID-меток).

  1. По приспособленности ко многократному записыванию данных.

RFID-метка — это, по сути, «флешка», которая может выступать носителем многократно перезаписываемых данных. Штрих-коды и QR-коды — одноразовые.

  1. По максимальному расстоянию до сканера.

Отдельные экземпляры радиметок могут считываться с расстояния в несколько десятков метров. Штрих-коды и QR-коды — как правило, считываются максимум с нескольких метров (чаще — десятков сантиметров).

  1. По приспособленности к обеспечению одновременной идентификации нескольких объектов.

Многие современные радиосчитыватели имеют уникальную функцию — по одновременному прочтению данных с радиометок в количестве, составляющем несколько сотен единиц. С учетом отсутствия необходимости обеспечения прямой видимости между сканером и метками это дает возможность человеку, осущестляющему сканирование, «обработать» буквально за несколько секунд целый склад с вещами.

В случае с использованием штрих-кодов каждое изделие ему придется «обслуживать» по отдельности. Это займет в разы больше времени.

  1. По степени защищенности от подделок.

Многие (отметим, что все же далеко не все) современные RFID-метки приспособлены к шифрованию данных. То есть, прочитаны они могут быть только со сканера, который настроен определенным образом. «Левый» сканер их не прочтет. Кроме того, будет затруднено их копирование в случае получения доступа к объектам. В свою очередь, любой штрих-код или QR-код можно очень легко скопировать.

Таким образом, технологические преимущества инновационных радиометок над традиционными штрих-кодами очевидны. Но, вместе с тем, RFID-метки пока что значительно уступают классическим решениям по стоимости: об этом мы сказали выше, рассматривая практические схемы внедрения меток в ритейле. Штрих-коды почти бесплатны, радиометки же могут стоить едва ли не дороже идентифицируемого объекта.

Рассмотрим теперь подробнее специфику основных технологических разновидностей самих меток, принтеров и сканеров для них.

Есть разные основания для классификации RFID-меток. Так, распространено их деление на категории:

  1. По максимальной дальности расположения от сканера:
  • метки ближней идентификации (рассчитанные на сканирование с расстояния не более нескольких десятков сантиметров);
  • метки средней по дальности идентификации (сканируются с расстояния 20 — 500 см);
  • метки для удаленной идентификации (сканируются с расстояния 5 — 300 м).
  1. По степени приспособленности к формированию исходящих радиопотоков (мы уже отчасти знакомы с этой классификацией):
  • пассивные (не приспособлены к систематическому формированию таких потоков);
  • активные (приспособлены к систематическому формированию таких потоков);
  • активно-пассивные (приспособлены к формированию таких потоков при наличии ряда ограничений).

Основой данной технологии являются методы, получившие широкое распространение в радарных и радиосистемах. Собственно, сокращение RFID образовано от названия Radio Frequency IDentification, в переводе на русский — радиочастотная идентификация.Система радиочастотной идентификации состоит из двух основных компонентов:

  • выполнение команд от программного обеспечения или контроллера, и их оповещение о событиях;
  • определение меток, находящихся в пределах радиуса действия считывателя (функции взаимодействия с множественными метками, такие как индивидуализация и предотвращение пересечения сигналов);
  • по­лучение идентификационных номеров меток, определение данных, до­ступных на метке;
  • чтение данных с метки и запись на метку;
  • выполнение специальных команд, например, «уничтожение» (пер­манентная деактивация метки), в целях сохранения конфиденциальности;
  • запись и чтение дополнительных элементов метки (например, акти­вация и считывание показаний датчиков, привязанных к метке, или активация светодиода для визуального информирования об активации);
  • выполнение
    криптографических функций (если таковые поддержи­ваются системой);

Считывающие устройства в исполнениях с поддержкой только , реже но существуют считыватели поддерживающие , и есть дажеТехнология производства полупроводников хорошо развита, и хотя некоторый прогресс еще возможен, ожидать крупных проры­вов в виде значительного снижения стоимости или снижения энер­гопотребления не стоит.

В настоящее время бюджетные кремние­вые RFID-метки стоят порядка пяти рублей за единицу при заказе крупнооптовой партии.В последнее время системы радиочастотной идентификации быстро раз­виваются, одним из свидетельств этого является расширение использования бесконтактных смарт карт в качестве электронных билетов для общественного пассажирского транспорта.

Пробежимся по коду

Давайте кратенько пробежимся по коду, который можно посмотреть

. Там пример эмуляции двух типов карт, я разберу только EM4102.

Перво-наперво, как гласит код, нам при прошивке микроконтроллера надо прошить fuse-биты в значение lfuse to 0xC0: таким образом, чтобы контроллер тактировался от внешнего генератора. Обращаю внимание, что любая перепрошивка контроллера будет сопряжена с тем, что его надо будет тактировать от внешнего источника, так как мы устанавливаем fuse биты с генерацией от внешнего генератора!

Весь код основан на макросах. Напомню, что такое макросы — это программа, которая подготавливает код к компиляции. Наша программа состоит всего из нескольких ассемблеровских инструкций: rjmp, call (2 такта), nop, ldi, out и ret (все по 1 такту)! Всё, весь остальной код формируется макросами в зависимости от макроса серийного номера (дефайна).

Особенность работы в том, что у нас достаточно мало тактов для нормальной работы. Попробуй успей за 32 такта сделать что-то, учитывая что инструкции перехода в контроллере AVR занимают 2 такта. Поэтому весь код генерируют макросы в зависимости от ID-карты.

#define FORMAT_IS_EM4102
#define EM4102_MFR_ID		0x12
#define EM4102_UNIQUE_ID	0x3456789A


Дефайнами задаём какой тип карты мы эмулируем и задаём ID-карты. Это главный макрос, на основании которого и формируется остальной код. И, тадам, его величество макросы.

    .macro	delay cycles
    .if cycles > 1
    rjmp	. 0
    delay	(cycles - 2)
    .elseif cycles > 0
    nop
    delay	(cycles - 1)
    .endif
    .endm

Макрос задержки, принимает на вход количество тактов задержки. Достаточно очевидный рекурсивный макрос, осуществляет задержку с помощью команды nop (нет операции, 1 такт) и команды rjmp . 0 (перейти на следующую строку, 2 такта). Комбинируя эти команды между собой, можно сделать задержку нужной длинны в тактах. По сути код ничего не делает, только тратит машинное время.

Если вы ещё соображаете, то дальше я вам совсем изнасилую мозг, но код так гениален что вам придётся потерпеть.

Рекурсивный макрос кодирования манчестер-кодом.

    .macro	manchester bit, count=1
    .if		count
    manchester (bit >> 1), (count - 1)
    .if		bit & 1
    baseband_1
    baseband_0
    .else
    baseband_0
    baseband_1
    .endif
    .endif
    .endm

    .macro	stop_bit
    baseband_0
    baseband_1_last
    .endm

Собственно тут и осуществляется вся логика. Принимает на вход битовую маску и счётчик битов. Если счётчик не нуль, то вызываем ещё раз сами себя, декрементируя счётчик (рекурсивный макрос, ага). Далее в самом теле идут вызовы макросов baseband_0, baseband_1 и baseband_1_last.

Помните выше я приводил таблицу в статье, как идёт кодирование содержимого карты, где идут биты чётности, и стоп биты в конце. Так вот, наша задача теперь ID-метки закодировать этим методом, для этого у нас существуют два макроса.

#define ROW_PARITY(n)  ( (((n) & 0xF) << 1) | 
                         (((n) ^ ((n) >> 1) ^ ((n) >> 2) ^ ((n) >> 3)) & 1) )

#define COLUMN_PARITY  ( (EM4102_MFR_ID >> 4) ^        
                         (EM4102_MFR_ID) ^             
                         (EM4102_UNIQUE_ID >> 28) ^    
                         (EM4102_UNIQUE_ID >> 24) ^    
                         (EM4102_UNIQUE_ID >> 20) ^    
                         (EM4102_UNIQUE_ID >> 16) ^    
                         (EM4102_UNIQUE_ID >> 12) ^    
                         (EM4102_UNIQUE_ID >> 8) ^     
                         (EM4102_UNIQUE_ID >> 4) ^     
                         (EM4102_UNIQUE_ID) )


ROW_PARITY — расчёт бита чётности в строке из четырёх бит, COLUMN_PARITY — расчёт контрольной суммы всей посылки.

Вся логика работы у нас описывается в макросе в .main

        header
        manchester	ROW_PARITY(EM4102_MFR_ID >> 4), 5
        manchester	ROW_PARITY(EM4102_MFR_ID >> 0), 5
        manchester	ROW_PARITY(EM4102_UNIQUE_ID >> 28), 5
        manchester	ROW_PARITY(EM4102_UNIQUE_ID >> 24), 5
        manchester	ROW_PARITY(EM4102_UNIQUE_ID >> 20), 5
        manchester	ROW_PARITY(EM4102_UNIQUE_ID >> 16), 5
        manchester	ROW_PARITY(EM4102_UNIQUE_ID >> 12), 5
        manchester	ROW_PARITY(EM4102_UNIQUE_ID >> 8), 5
        manchester	ROW_PARITY(EM4102_UNIQUE_ID >> 4), 5
        manchester	ROW_PARITY(EM4102_UNIQUE_ID >> 0), 5
        manchester	COLUMN_PARITY, 4
        stop_bit

Ну то есть, так же точно передаём заголовочные 9 бит, потом манчестер кодинг, высчитывая бит чётности для каждых 4-х бит, в конце контрольная сумма и стоп бит.

Осталось разобраться, что же такое baseband. Для этого у нас служат ещё одни макросы обёртки (да сколько можно-то, а?).

        .macro baseband_0
        rcall	baseband30_0
        rjmp	. 0
        .endm

        .macro baseband_1
        rcall	baseband30_1
        rjmp	. 0
        .endm
        
        .macro baseband_1_last
        rcall	baseband30_1
        rjmp	main
        .endm

        .macro header
        manchester 0x1FF, 9
        .endm

Макросы baseband* — выполняют ассемблеровский код: вызывают соответствующие функции, и потом делают переход на другую команду. Макрос baseband_1_last — аналогична макросу baseband_1, кроме того что делает безусловный переход не на команду ниже, а в начало функции main.

Последнее, что осталось разобрать — это функции baseband30_0 и baseband30_1. Они описываются следующим кодом.

baseband30_0:
        ldi	r16, OUT_PINS		// 1
        rjmp	baseband30		// 2

        /*
         * Emit a 1 at the baseband layer.
         * Takes a total of 30 clock cycles, including call overhead.
         */
baseband30_1:
        ldi	r16, 0			// 1
        rjmp	baseband30		// 2
        
        /*
         * Internal routine for baseband32_0 and _1. Must use
         * a total of 24 clock cycles. (32 - 1 ldi - 2 rjmp - 3 rcall)
         */ 
baseband30:
        out	_SFR_IO_ADDR(DDRB), r16		// 1
        delay	19				// 19
        ret					// 4

В зависимости от того, какая функция вызывается baseband30_0 или baseband30_1 в регистр r16 записывается значение того что должно быть на пине ввода/вывода: 1 или 0. После этого идёт безусловный переход на baseband30 осуществляется вывод и задержка на 19 тактов, после чего идёт возврат.

Самая большая магия этого кода, что он просчитан точно до каждого такта, каждый такт передачи манчестерского кода занимает ровно столько периодов, сколько допустимо стандартом, а именно 32 такта процессора! Это фантастически гениально, надо помнить сколько тактов занимает каждая команда.

Давайте его скорее скомпилируем и посмотрим как он выглядит, как развернутся все эти макросы. Компилируем командой make (предварительно установив avr-gcc) и дизассемблируем получившийся elf-файл

00000000 __vectors:
   0:	0e c0       	rjmp	. 28     	; 0x1e __ctors_end
   2:	15 c0       	rjmp	. 42     	; 0x2e __bad_interrupt
...

Вначале у нас вектора прерываний, но нас интересует только первый jump. Так как остальные вектора никуда не ведут.

0000001e __ctors_end:
  1e:	11 24       	eor	r1, r1
  20:	1f be       	out	0x3f, r1	; 63
  22:	cf e5       	ldi	r28, 0x5F	; 95
  24:	d2 e0       	ldi	r29, 0x02	; 2
  26:	de bf       	out	0x3e, r29	; 62
  28:	cd bf       	out	0x3d, r28	; 61
  2a:	02 d0       	rcall	. 4      	; 0x30 main
  2c:	11 c1       	rjmp	. 546    	; 0x250 _exit

Здесь мы настраиваем порты ввода/вывода, и вызываем функцию main. A main состоит из безумного количества вызовов функций baseband30* и jump (так развернулся наша адский цирк макросов).

00000030 main:
  30:	01 d1       	rcall	. 514    	; 0x234 baseband30_1
  32:	00 c0       	rjmp	. 0      	; 0x34 main 0x4
  34:	fd d0       	rcall	. 506    	; 0x230 baseband30_0
  36:	00 c0       	rjmp	. 0      	; 0x38 main 0x8
  38:	fd d0       	rcall	. 506    	; 0x234 baseband30_1
  3a:	00 c0       	rjmp	. 0      	; 0x3c main 0xc
  3c:	f9 d0       	rcall	. 498    	; 0x230 baseband30_0
  3e:	00 c0       	rjmp	. 0      	; 0x40 main 0x10
  40:	f9 d0       	rcall	. 498    	; 0x234 baseband30_1
  42:	00 c0       	rjmp	. 0      	; 0x44 main 0x14
  44:	f5 d0       	rcall	. 490    	; 0x230 baseband30_0
  46:	00 c0       	rjmp	. 0      	; 0x48 main 0x18
  48:	f5 d0       	rcall	. 490    	; 0x234 baseband30_1
  4a:	00 c0       	rjmp	. 0      	; 0x4c main 0x1c
  4c:	f1 d0       	rcall	. 482    	; 0x230 baseband30_0
...
 22e:	00 cf       	rjmp	.-512    	; 0x30 main


И так далее… пока не джампнемся снова на main

Ну и глянем как же выглядит наш baseband модуль.

00000230 baseband30_0:
 230:	08 e1       	ldi	r16, 0x18	; 24
 232:	02 c0       	rjmp	. 4      	; 0x238 baseband30

00000234 baseband30_1:
 234:	00 e0       	ldi	r16, 0x00	; 0
 236:	00 c0       	rjmp	. 0      	; 0x238 baseband30

00000238 baseband30:
 238:	07 bb       	out	0x17, r16	; 23
 23a:	00 c0       	rjmp	. 0      	; 0x23c baseband30 0x4
 23c:	00 c0       	rjmp	. 0      	; 0x23e baseband30 0x6
 23e:	00 c0       	rjmp	. 0      	; 0x240 baseband30 0x8
 240:	00 c0       	rjmp	. 0      	; 0x242 baseband30 0xa
 242:	00 c0       	rjmp	. 0      	; 0x244 baseband30 0xc
 244:	00 c0       	rjmp	. 0      	; 0x246 baseband30 0xe
 246:	00 c0       	rjmp	. 0      	; 0x248 baseband30 0x10
 248:	00 c0       	rjmp	. 0      	; 0x24a baseband30 0x12
 24a:	00 c0       	rjmp	. 0      	; 0x24c baseband30 0x14
 24c:	00 00       	nop
 24e:	08 95       	ret

В конце видно как delay развернулся в список jump и nop для задержки. Вот такая красивая магия.

Ну что же, с кодом разобрались. Соберите вытекший мозг с ушей, переходим к испытаниям.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector