Ethernet – Что Это? Описание Классического Ethernet

Что такое ethernet?

Ethernet – это самый распространенный на сегодняшний день стандарт технологии сети.

Особенности:

  • работает с коаксиальным кабелем, витой парой, оптическими кабелями;
  • топология – шина, звезда;
  • метод доступа – CSMA/CD.

Архитектура сетевой технологии Ethernet фактически объединяет целый набор стандартов, имеющих как общие черты, так и отличия.

Технология Ethernet была разработана вместе со многими первыми проектами корпорации Xerox PARC. Общепринято считать, что Ethernet был изобретён 22 мая 1973 года, когда Роберт Меткалф составил докладную записку для главы PARC о потенциале технологии Ethernet.

Но законное право на технологию Меткалф получил через несколько лет. В 1976 году он и его ассистент Дэвид Боггс издали брошюру под названием «Ethernet: Distributed Packet Switching For Local Computer Networks». Меткалф ушёл из Xerox в 1979 году и основал компанию 3Com для продвижения компьютеров и локальных вычислительных сетей.

Дальнейшее развитие технологии EtherNet:

  • 1982-1993 разработка 10Мбит/с EtherNet;
  • 1995-1998 разработка Fast EtherNet;
  • 1998-2002 разработка GigaBit EtherNet;
  • 2003-2007 разработка 10GigaBit EtherNet;
  • 2007-2022 разработка 40 и 100GigaBit EtherNet;
  • 2022 по сей день разработка Terabit Ethernet.

10base2


Ограничения по спецификации Ethernet 10Base2:

  • Среда передачи – “тонкий” (около 6 мм в диаметре) коаксиальный
    кабель (RG-58 различных модификаций) с волновым сопротивлением 50 Ом.
  • Длина кабеля между соседними станциями не менее 0,5 м.
  • Максимальная длина сегмента сети не более 185 метров.
  • Общая длина всех кабелей в сегментах (соединенных через повторители) не более 925 метров.
  • Общее число узлов на один сегмент сети не более 30 (включая повторители).
  • Сегмент оканчивается терминаторами, один из которых заземляется.
  • Ответвления от сегмента недопустимы.

Сеть Ethernet 10Base2 часто называют “тонкой Ethernet” или
Thinnet из-за применяемого кабеля. Это одна из самых простых в
установке и дешевых типов сетей. Топология сети – общая шина. Кабель
прокладывается вдоль маршрута, где размещены рабочие станции, которые
подключаются к сегменту при помощи Т-коннекторов.

Правила построения сетей, использующих физическую топологию “общая шина”.

В этом случае действует правило 5-4-3, т.е.:

  • не более чем 5 сегментов сети
  • могут быть объединены не более чем 4-мя повторителями
  • при этом станции могут быть подключены не более чем к 3-м
    сегментам, остальные 2 могут быть использованы для увеличения общей
    длины сети.

10base-f

Среда передачи данных стандарта 10Base-F –
оптоволокно. В стандарте повторяется топология и функциональные
элементы 10Base-T: концентратор, к портам которого с помощью кабеля
подключаются сетевые адаптеры станций. Для соединения адаптера с
повторителем используется два оптоволокна – одно на прием, второе на
передачу.

Существует несколько разновидностей 10Base-F. Первым стандартом для использования оптоволокна в сетях Ethernet был FOIRL

(Fiber Optic Inter-Repeater Link). Ограничение длины оптоволоконных
линий между повторителями 1 км при общей длине сети не более 2,5 км .
Максимальное число повторителей – 4.

В стандарте 10Base-FL, предназначенном для соединения
станций с концентратором, длина сегмента оптоволокна до 2 км при общей
длине сети не более 2,5 км. Максимальное число повторителей также 4.
Ограничения длин кабелей даны для многомодового кабеля. Применение
одномодового кабеля позволяет прокладывать сегменты длиной до 20 км
(!).

Существует также стандарт 10Base-FB, предназначенный для
магистрального соединения повторителей. Ограничение на длину сегмента –
2 км при общей длине сети 2,74 км. Количество повторителей – до 5.
Характерной особенностью 10Base-FB является способность повторителей
обнаруживать отказы основных портов и переходить на резервные за счет
обмена специальными сигналами, которые отличаются от сигналов передачи
данных.

Стандарты 10Base-FL и 10Base-FB не совместимы между собой.
Дешевизна оборудования 10Base-FL позволила ему обогнать по
распространенности волоконно-оптические сети других стандартов.

Оконцовка оптоволоконных кабелей представляет собой существенно
более сложную задачу, чем оконцовка медных кабелей. Необходимо точное
совмещение осей светопроводящего материала – волокон и коннекторов.
Типы коннекторов в основном отличаются друг от друга размером и формой
направляющего ободка.

Если в самых первых биконических коннекторах
использовались конические ободки, то в настоящее время используются
коннекторы типа SC (square cross-section), имеющие ободок квадратного
сечения. Для надежного закрепления коннектора в гнезде в ранних типах
коннекторов использовалась байонетная (ST) или резьбовая (SMA)
фиксация.

Сейчас в коннекторах SC используется технология “push-pull”,
предусматривающая закрепление коннектора в гнезде защелкиванием.
Коннекторы типа SC применяются не только в локальных сетях, но также и
в телекоммуникационных системах и в сетях кабельного телевидения.

Отдельная проблема – соединение оптических волокон. Надежное и
долговечное соединение достигается сваркой волокон, что требует
специального оборудования и навыков.

Область применения оптоволокна в сетях Ethernet – это
магистральные каналы, соединения между зданиями, а также те случаи,
когда применение медных кабелей невозможно из-за больших расстояний или
сильных электромагнитных помех на участке прокладки кабеля. На
сегодняшний день стандарт 10Base-F вытесняется более скоростными
стандартами Ethernet на оптоволоконном кабеле.

Правила построения сетей, использующих физическую топологию “звезда”

Правило 5-4-3 можно интерпретировать в этом случае следующим образом:

  • каскадно могут объединяться не более чем 4 концентратора;
  • “дерево” каскадируемых концентраторов должно быть построено
    таким образом, чтобы между двумя любыми станциями в сети было не более
    чем 4 концентратора;

В смешанных сетях могут быть исключения из этого правила –
например, если один из хабов поддерживает не только витую пару, но и
оптоволоконный кабель, то допустимое число каскадируемых концентраторов
увеличивается до 5.

10base-t

Соответствует стандарту IEEE 802.3i, принятому в 1991 г.

Ограничения спецификации Ethernet 10Base-T:

  • Среда передачи – неэкранированный кабель на основе витой пары (UTP
    – Unshielded Twisted Pair) категории 3 и выше. При этом задействуются 2
    пары – одна на прием, вторая на передачу.
  • Физическая топология “звезда”.
  • Длина кабеля между станцией и концентратором не более 100 м.
  • Максимальный диаметр сети не более 500 метров.
  • Количество станций в сети не более 1024.

В сети 10Base-Т термин “сегмент” применяют к соединению
станция-концентратор. Дополнительные расходы в 10Base2, связанные с
необходимостью наличия концентратора и большим количеством кабеля,
компенсируются большей надежностью и удобством эксплуатации.

Индикаторы, присутствующие даже на самых простых концентраторах,
позволяют быстро найти неисправный кабель. Управляемые модели
концентраторов способны осуществлять мониторинг и управление сетью.
Совместимость кабельной системы со стандартами Fast Ethernet
увеличивает пропускную способность без изменения кабельных систем. Для
оконцовки кабеля применяются восьмиконтактные разъемы и розетки RJ-45.

Ethernet 10base5

Спецификация Ethernet 10Base5 предусматривает выполнение следующих условий:

  • Среда передачи – “толстый” около 12 мм в диаметре коаксиальный кабель (RG-8 или RG-11) с волновым сопротивлением 50 Ом.
  • Длина кабеля между соседними станциями не менее 2,5 м.
  • Максимальная длина сегмента сети не более 500 метров.
  • Общая длина всех кабелей в сегментах не более 2,500 метров.
  • Общее число узлов на один сегмент сети не более 100.
  • Сегмент оканчивается терминаторами, один из которых должен быть заземлен.
  • Ответвительные кабели могут быть сколь угодно короткими, но расстояние от трансивера до адаптера не более 50 метров.
  • В идеальном случае расстояние между соседними станциями должно
    быть кратно 2,5 м. Некоторые кабели имеют соответствующую маркировку
    через каждые 2,5 м для облегчения соблюдения этого условия.

Наибольшее распространение получило подключение трансивера к
кабелю при помощи разъемов, имеющих веселенькое название “вампиры” (это
из-за того, что при подключении разъем прокалывает кабель до
центральной жилы). Подключение производится без остановки работы сети,
в отличие от подключения через N-коннектор.

В трансивере находится активный приемо-передатчик с детектором
коллизий и высоковольтным (1-5 кВ) разделительным трансформатором,
питание обеспечивается от AUI-порта адаптера.

Основные преимущества 10Base5: большая длина сегмента,
хорошая помехозащищенность кабеля и высокое напряжение изоляции
трансивера. Благодаря этим качествам “толстый” Ethernet чаще всего
применялся для прокладки базовых сегментов (Backbone). Сейчас этот
стандарт практически полностью вытеснен более дешевыми и
производительными реализациями Ethernet.

Детские болезни ethernet и борьба с ними

Ethernet
использует “случайный” метод доступа к сети (CSMA/CD – carrier-sense
multiple access/collision detection) – множественный доступ с
обнаружением несущей. В нем отсутствует последовательность, в
соответствии с которой станции могут получать доступ к среде для
осуществления передачи.

В этом смысле доступ к среде осуществляется
случайным образом. Преимущество метода: алгоритмы случайного доступа
реализуются значительно проще по сравнению с алгоритмами
детерминированного доступа. Следовательно, аппаратные средства могут
быть дешевле.

Поэтому Ethernet более распространен по сравнению с
другими технологиями для локальных сетей. При загрузке сети уже на
уровне 30% становятся ощутимыми задержки при работе станций с сетевыми
ресурсами, а дальнейшее увеличение нагрузки вызывает сообщения о
недоступности сетевых ресурсов.

Причиной этого являются коллизии,
возникающие между станциями, начавшими передачу одновременно или почти
одновременно. При возникновении коллизии, передаваемые данные не
доходят до получателей, а передающим станциям приходится возобновлять
передачу.

Сегментация сетиОсновной способ борьбы с перегрузкой
сегментов во времена преобладания сетей стандарта 10Base2. Весь сегмент
разбивался на части. При этом вопрос передачи информации между
сегментами при необходимости решался с помощью маршрутизации.

Аппаратные средства особой популярностью не пользовались. Обычно сервер
с несколькими сетевыми адаптерами устанавливался приблизительно в
центре сети и на нем настраивался программный маршрутизатор. Таким
образом, кроме изоляции коллизий в отдельных сегментах, можно было
увеличить общий размер сети до 185 185 = 370 м.

Коммутация пакетовИспользуя топологию “звезда”, стандарт 10Base-T на физическом уровне
реализует “свернутую” или “коллапсированную” общую шину, поэтому
проблема коллизий актуальна и для него. Впервые технология коммутации
сегментов Ethernet была предложена фирмой Kalpana в 1990 году.

Коммутирующие концентраторы, или просто коммутаторы (switch), позволили
каждой станции использовать среду передачи без конкуренции с другими за
счет буферизации входящих данных и передаче их станции-получателю
только тогда, когда его порт открыт.

Коммутация фактически преобразует
Ethernet из широковещательной системы с конкурентной борьбой за полосу
пропускания в систему адресной передачи данных. При этом пары портов
отправитель-адресат динамически образуют независимые виртуальные
каналы.

Это увеличивает пропускную способность сети по сравнению с
применением концентраторов. Довольно популярными являются решения,
когда серверы подключаются к более скоростным портам коммутатора,
станции – к менее скоростным. В этом случае в идеале каждая станция
имеет доступ к серверу с максимальной скоростью, поддерживаемой
адаптером.

Поскольку ограничения диаметра сети в классической технологии
Ethernet связаны с необходимостью своевременного обнаружения коллизий,
применение коммутаторов позволяет преодолеть эти ограничения, разбивая
сеть на несколько доменов коллизий.

Передача пакетов от порта-источника в порт-получатель в
коммутаторе происходит либо “на лету” (cut-though), либо с полной
буферизацией пакетов (store-and-forward). При использовании передачи
“на лету” передача порту-получателю начинается еще до окончания приема
пакета с порта-источника, используя адрес получателя из заголовка
пакета.

Такой способ сокращает задержки передачи при небольшой загрузке
сети, однако ему присущи и недостатки – в этом случае невозможна
предварительная обработка пакетов, позволяющая отбрасывать плохие
пакеты без передачи их получателю. При увеличении загрузки сети
задержка при передаче “на лету” практически равняется задержке при
передаче с буферизацией, это объясняется тем, что в этом случае
выходной порт часто бывает занят приемом другого пакета, поэтому вновь
поступивший пакет для данного порта все равно приходится буферизовать.

Во многих коммутаторах применяется адаптивная технология:
режимы буферизации и передачи “на лету” применяются в зависимости от
величины нагрузки сети.

Технология коммутации позволяет строить сети с большим
количеством станций, при этом доля широковещательного (broadcast)
трафика достигает существенных значений. При необходимости ограничить
доступ станций к сетевым ресурсам, применяется технология виртуальных
локальных сетей (VLAN).

Виртуальную локальную сеть (ВЛС) образует
группа узлов сети, трафик которой, в том числе и широковещательный, на
канальном уровне полностью изолирован от узлов, входящих в другие ВЛС.
Передача кадров между разными ВЛС на основании адреса канального уровня
невозможна, независимо от типа адреса – уникального, группового или
широковещательного.

Долгое время стандарт на ВЛС отсутствовал, вместе с тем
существовало множество несовместимых друг с другом фирменных
реализаций. Сейчас принят стандарт на ВЛС IEEE 802.1Q.

Для построения ВЛС до принятия стандарта IEEE 802.1Q обычно
применялась группировка портов, либо группировка MAC-адресов. Решения
на основе группировки портов проще в применении, но в случае соединения
нескольких коммутаторов каждая ВЛС требует отдельного соединения между
ними, что приводит к расточительному использованию портов и кабелей.

Группировка на основе MAC адресов рациональнее использует порты и
соединения, но трудоемка при эксплуатации. В качестве достоинства этих
способов можно отметить использования стандартных кадров Ethernet.
Стандарт IEEE 802.1Q предусматривает изменение структуры кадра Ethernet
с введением в него дополнительных полей, в которые помещаются сведения
о принадлежности узла к определенной ВЛС. Кроме того, добавляются поля,
где храниться информация о приоритете кадра, используемая в стандарте
IEEE 802.1p.

Для передачи информации между разными ВЛС необходимо
привлечение сетевого уровня. Соответствующие средства могут
представлять собой либо отдельный маршрутизатор, либо входить в состав
аппаратно-программного обеспечения коммутатора. Коммутаторы, имеющие
средства для работы на уровне сетевых протоколов, называются
“маршрутизирующими коммутаторами”, “коммутаторами третьего уровня”.

Для
управления потоками информации в них применяется либо последовательная,
либо потоковая маршрутизация пакетов. В первом случае реализуются
классические функции маршрутизатора, и каждый пакет обрабатывается
отдельно. Во втором случае используется нестандартный метод,
применяемый для сокращения числа операций для определения маршрута
пакетов.

Первый пакет обрабатывается на третьем уровне и определяет
порт назначения для остальных пакетов для того же адресата. Дальнейшая
пересылка пакетов происходит на втором уровне, что ускоряет процесс
передачи по сравнению с классической маршрутизацией.

Классификация ethernet

По скорости передачи данных существуют такие технологии:

  1. Ethernet – 10 Мб/с
  2. Fast Ethernet – 100 Мб/с
  3. Gigabit Ethernet – 1 Гб/с
  4. 10G Ethernet – 10 Гб/с

Современное оборудование позволяет достигать скорости в 40 Гб/с и 100 Гб/с: такие технологии получили название 40GbE и 100GbE соответственно.

Также стоит выделить классический и коммутируемый Ethernet. Первый изначально использовал разделяемую среду в виде коаксиального кабеля, который позже был вытеснен концентраторами (hub). Основные недостатки – низкая безопасность и плохая масштабируемость (искажение данных при одновременной передаче 2-мя и более компьютерами, также известное как “коллизия”).

Коммутируемый Ethernet является более новой и усовершенствованной технологией, которая используется по сей день. Чтобы устранить недостатки предыдущей версии, разделяемую среду исключили и использовали соединение точка-точка. Это стало возможным благодаря новым устройствам под названием “коммутаторы” (switch).

Классическая технология ethernet давно и успешно заменена новыми технологиями, но некоторые нюансы работы сохранились. рассмотрим классическую версию.

Физический уровень включает в себя 3 варианта работы Ethernet, которые зависят от сред передачи данных. Это:

  • коаксиальный кабель
  • витая пара
  • оптоволокно

Канальный, в свою очередь, включил методы доступа, а также протоколы, что ничем не отличаются для различных сред передачи данных. Подуровни LLC и MAC в классической технологии присутствуют вместе.

MAC-адреса позволяют идентифицировать устройства, подключенные к сети Ethernet, и идентичных при этом быть не должно, в противном случае из нескольких устройств с одинаковыми адресами будет работать только одно.

По типам MAC-адреса разделяются на:

  • Индивидуальные (для отдельных компьютеров).
  • Групповые (для нескольких компьютеров).
  • Широковещательные (для всех компьютеров сети).

Адреса могут назначаться как производителем оборудования (централизованно), так и администратором сети (локально).

Технология Ethernet и формат кадра:

Также не стоит забывать о коллизиях. Если сигнал, который принят, отличается от переданного, это означает, что произошла коллизия.

Технология CSMA/CD разработана с учетом возникновения коллизий и предполагает их контроль. Модель CSMA/CD выглядит следующим образом:

Классический Ethernet плох тем, что становится неработоспособным при нагрузке более чем 30%.

Классический ethernet

Исторически появился самым первым, в первом варианте Ethernet использовалась топология “общая шина”.

Вдоль всех компьютеров шел коаксиальный кабель, который соединял все компьютеры между собой. Компьютеры подключались к этому коаксиальному кабелю с помощью Т-коннекторов, к которым с двух сторон подключались разные участки коаксиального кабеля соединяющего компьютер с двумя соседними.

Такие сети не были удобны в эксплуатации, если где-то происходил разрыв кабеля или повреждение адаптера, то сразу переставала работать вся сеть. И найти место, где конкретно произошла проблема было очень сложно, поэтому со временем появился второй вариант технологии Ethernet на основе устройств — концентратор (hud). 

Коммутируемый ethernet

На сегодняшний день это наиболее оптимальная альтернатива, которая полностью исключает возможность появления коллизий и связанных с ними проблем.

Суть коммутируемого Ethernet в том, что вместо хаба используется свич (коммутатор) – устройство, которое работает на канальном уровне и обладает полносвязной топологией, что обеспечивает соединение всех портов друг с другом напрямую по технологии точка-точка.

Таблицы коммутации есть в каждом таком устройстве. Они описывают, какие компьютеры к какому порту свича подключены. Чтобы узнать MAC-адреса, используется алгоритм обратного обучения, а для передачи данных – алгоритм прозрачного моста.

Простейшая таблица коммутации:

Алгоритм обратного обучения работает таким образом: коммутатор принимает кадры, анализирует заголовок и извлекает из него адрес отправителя. Таким образом, к определенному порту подключен компьютер с конкретным MAC-адресом.

Прозрачный мост не требует настройки и так назван за счет того, что он не заметен для сетевых устройств (у него нет своего MAC-адреса). Коммутатор принимает кадр, анализирует заголовок, извлекает из него адрес получателя и сопоставляет его с таблицей коммутации, определяя порт, к которому подключено устройство.

Модификации ethernet.

Классификация модификаций Ethernet в основном заключается в различиях двух факторов – используемого типа кабеля, а также возможной скорости передачи данных. Различают:

Варианты соединенияСкорость
EthernetКоаксиальный кабель, оптика, витая пара10 Мб/с
Fast EthernetОптика, витая пара100 Мб/с
Gigabit EthernetОптика, витая пара1 Гб/с
10G EthernetОптика, витая пара10 Гб/с

Как мы и отметили сразу, различаются, в первую очередь, скорость передачи данных и тип используемого кабеля. На заре развития Ethernet использовались исключительно коаксиальные кабели, и лишь затем появились варианты с витой парой и оптикой, что привело к значительному расширению возможностей. К примеру, использование витой пары дает одновременно:

ТипОписание
Simplex (симплексная передача)Передача данных только в одном направлении
Half Duplex (полудуплексная передача)Передача возможна в двух направлениях, но не одновременно
Full Duplex (полнодуплексная передача)Возможна одновременная передача в двух направлениях

Внутри указанных четырех модификаций (Ethernet, Fast Ethernet, Gigabit Ethernet, 10G Ethernet) присутствует дополнительное “внутреннее” разделение. Например, возьмем 10 Мбит/с Ethernet. Этот тип включает в себя:

Ethernet (10 Мб/с)
10Base-2
10Base-5
10Base-T
10Base-F
10Base-FL

При этом различная физическая реализация подключения (разные кабели) приводят к возможности использования разных топологий сети. Для 10Base-5 максимально топорно:

А вот 10Base-T уже может использовать полнодуплексную передачу данных:

Здесь, как видите присутствует устройство под названием сетевой концентратор. Поэтому небольшое лирическое отступление на эту тему.

Зачастую термины сетевой концентратор, сетевой коммутатор и маршрутизатор перемешиваются и могут использоваться для описания одного и того же. Но строго говоря, все эти три термина относятся к абсолютно разному типу устройств:

  • Сетевой концентратор (хаб) работает на 1-м (физическом) уровне модели OSI и ретранслирует сигнал с одного входящего порта, на несколько исходящих. На этом его функционал заканчивается.
  • Сетевой коммутатор (свитч) работает на 2-м (канальном уровне). Здесь также происходит передача данных от одного устройства нескольким, но при этом коммутатор анализирует кадры на предмет MAC-адреса получателя и передает пакет только тому узлу, которому он адресован(!). Адресацию и структуру кадров подробно разберем чуть ниже.
  • Маршрутизатор же и вовсе работает на 3-м уровне (сетевом) модели OSI.

Возвращаемся к схеме для стандарта 10Base-T. Поскольку для передачи и приема используются физически разные линии, то нет и препятствий для одновременного протекания данных процессов. Принцип же формирования данных остается неизменным практически для всех модификаций Ethernet, к обсуждению чего мы и переходим.

Приоритезация трафика

Еще одно свойство Ethernet,
рассматриваемое как недостаток при необходимости передачи по сети
информации, чувствительной к задержкам, такой как голос и видео.
Протоколы канального уровня Ethernet не поддерживают поле приоритета
кадра, поэтому для решения этой проблемы производители сетевого
оборудования начали встраивать в коммутаторы дополнительные
технологические решения.

Например, технология фирмы 3Com PACE (Priority
Access Control Enabled – управление приоритетами доступа), позволяющая
в одном канале выделить два логических подканала – с высоким и низким
приоритетами. В этом случае приоритеты приписываются портам коммутатора
и кадр помещается в очередь кадров соответствующего приоритета в
зависимости от того, на какой порт он поступил.

Положение изменилось с принятием стандарта IEEE 802.1p: появилась
возможность определения восьми уровней приоритета кадра на основе
использовании новых полей, определенных в стандарте IEEE 802.1Q. Таким
образом, управление приоритетами организуется более гибко, без привязки
к определенным портам.

Кроме приоритезации трафика, чувствительного к задержкам
времени, существует необходимость повышения приоритета портов
коммутатора по отношению к портам конечных станций для предотвращения
потери пакетов. Для этого производители используют нестандартные
параметры доступа к среде для портов коммутатора.

“Агрессивное
поведение” порта при захвате среды проявляется после окончания передачи
очередного пакета или после обнаружения коллизии. В первом случае после
окончания передачи коммутатор выдерживает паузу меньше положенной по
стандарту и начинает передачу нового пакета.

Станция, выдержав
положенную паузу, при попытке передачи обнаруживает, что среда уже
занята. Во втором случае после обнаружения коллизии порт коммутатора
также делает паузу меньшую стандартной, захватывает среду и станции
также не удается начать передачу. Коммутатор адаптивно изменяет степень
агрессивности по мере необходимости.

Еще один прием, применяемый в коммутаторах, основан на передаче
станции фиктивных пакетов станции в то время, когда в буфере
коммутатора нет пакетов для передачи на порт станции. При этом среда
передачи равновероятно захватывается попеременно портом коммутатора и
станцией, и интенсивность передачи пакетов в коммутатор снижается в
среднем вдвое.

Скорость

Технология “Эзернет” разработана в 1970. Поэтому, сам по себе стандарт Ethernet имеет скорость 10 Мбит/с. Мало, согласитесь? Вот и мы так думаем. В 1995 году на свет появился стандарт Fast Ethernet, к которому мы все так привыкли и который работает в большинстве домашних “локалок”. Не трудно догадаться – его скорость 100 Мбит/с

В 1999 году, благодаря технологическому “рывку”, на свет появился Gigabit Ethernet, который уже поддерживает подключения скоростью 1000 Мбит/с или 1 Гбит/с. Отметим, что “гигабитными” линками зачастую в корпоративных сетях подключает даже сервера.

Линком в профессиональной среде называют канал подключения того или иного узла. Фраза “подключил к свичу сервер гигабитным линком” означает, что коллега подключил кабелем UTP сервер к коммутатору по стандарту Gigabit Ethernet.

И пожалуй финалочку по скорость: впервые в 2002 году IEEE опубликовал стандарт 802.3ae, в котором описал 10 Gigabit Ethernet, или как его еще называют 10GE, 10GbE и 10 GigE. Догадаетесь, на какой скорости он работает? 😉

Стабильность сигнала

На самом деле развертывание локальной сети на базе проводного подключения дороже и сложнее. Но конечно есть преимущества, а особенно для организаций. В первую очередь, вспомним: Wi-FI передается по радиочастотам. Если вы живете в Москве и слушаю радио на машине въезжали в Лефортовский туннель вы точно знаете, что происходит с радиосигналом по мере погружения в туннель. Тоже самое происходит и с Wi-Fi.

В проводном Ethernet помехи – не проблема. Если вы – организация и осуществляете чувствительные банковские транзакции, или у вас в офисе работает IP – телефония – конечно проводное подключение по Ethernet. Если вы домашний пользователей и “рубитесь в доту” или скачиваете массивные файлы, смотрите трансляции, майните биткоины – лучше Ethernet.

Формат кадра технологии ethernet

В сетях Ethernet существует 4 типа фреймов (кадров):

  • кадр 802.3/LLC (или кадр Novell802.2),
  • кадр Raw 802.3 (или кадр Novell 802.3),
  • кадр Ethernet DIX (или кадр Ethernet II),
  • кадр Ethernet SNAP.

На практике в оборудовании EtherNet используется только один формат кадра, а именно кадр EtherNet DIX, который иногда называют кадром EtherNet II по номеру последнего стандарта DIX.

  • Первые два поля заголовка отведены под адреса:
    DA (Destination Address) – MAC-адрес узла назначения;
    SA (Source Address) – MAC-адрес узла отправителя. Для доставки кадра достаточно одного адреса – адреса назначения, адрес источника помещается в кадр для того, чтобы узел, получивший кадр, знал, от кого пришел кадр и кому нужно на него ответить.
  • Поле T (Type) содержит условный код протокола верхнего уровня, данные которого находятся в поле данных кадра, например шестнадцатеричное значение 08-00 соответствует проколу IP. Это поле требуется для поддержки интерфейсных функций мультиплексирования и демультиплексирования кадров при взаимодействии с протоколами верхних уровней.
  • Поле данных. Если длина пользовательских данных меньше 46 байт, то это поле дополняется до минимального размера байтами заполнения.
  • Поле контрольной последовательности кадра (Frame Check Sequence, FCS) состоит из 4 байт контрольной суммы. Это значение вычисляется по алгоритму CRC-32.

Кадр EtherNet DIX (II) не отражает разделения канального уровня EtherNet на уровень MAC и уровень LLC: его поля поддерживают функции обоих уровней, например интерфейсные функции поля T относятся у функциям уровня LLC, в то время как все остальные поля поддерживают функции уровня MAC.

Рассмотрим формат кадра EtherNet II на примере перехваченного пакета с помощью сетевого анализатора Wireshark

Обратите внимание, что так как MAC адрес состоит из кода производителя и номера интерфейса, то сетевой анализатор сразу преобразует код производителя в название фирмы-изготовителя.

Таким образом в технологии EtherNet в качестве адреса назначения и адреса получателя выступают MAC адреса.

Экзотика

10Broad36Необычная технология в семействе Ethernet.
Отличается способом передачи – широкополосная (“broadband”) вместо
узкополосной (“baseband”). В этом случае полоса пропускания кабеля
разделяется на отдельные частотные диапазоны, которые назначаются
каждой службе.

Длина сегмента сети не более 1800 метров, а максимальное
расстояние между любыми двумя станциями в сети – 3600 м. Скорость
передачи 10 Mбит/с. Подключение станций производится с помощью
трансиверов, подсоединяемых к кабелю. Длина AUI кабеля, соединяющего
трансивер со станцией, не более 50 м.

Сегменты сети 10Broad36 должны
терминироваться т.н. “оконечным головным” устройством, которое
располагается на конце единичного или в корне множественных сегментов.
Соединение станций в сети осуществляется одним или двумя кабелями. В
первом случае для приема и передачи сигналов выделяются различные
каналы частот.

Передача станции поступает только на “оконечное
головное” устройство, которое преобразует частоту, после чего передача
принимается другими станциями, подключенными к сети. Во втором случае
один из кабелей используется для приема, второй – для передачи.

Сигнал
достигает “оконечного головного” устройства, после чего проходит на
другой кабель без изменения частоты и принимается любой станцией в
сети. Полнодуплексный режим не поддерживается.
Технология 10Broad36 не получила широкого распространения, вероятно,
из-за сложности реализации и высокой стоимости.

1Base5
Эта технология соответствует стандарту IEEE 802.3e, утвержденному в
1987 году. Также известна под именем StarLAN. Топология – “звезда”,
ограничение на длину сегмента – 400 м. Работает с витой парой категории
2 и выше. Скорость передачи – 1 Мбит/с. Упоминается, в основном, как
часть не менее экзотической UltraNet или в порядке перечисления – “и
такое, мол, бывает Ethernet - Что Это? Описание Классического Ethernet

Быстрее… еще быстрее…После того, как стандарт
10Base-T стал преобладающим, определив среду передачи строящихся сетей
– медную витую пару, развитие технологии пошло в направлении увеличения
скорости передачи данных. Первой из технологий 100 Мбит/с для локальных
сетей, была FDDI.

При всех достоинствах эта технология была дорогостоящей. Для
удешевления путем применения кабелей на медной витой паре фирмой
Crescendo была разработана и запатентована схема кодирования и
скремблирования, допускающая полнодуплексную передачу “точка-точка” по
UTP для стандарта CDDI.

100Base-T имеет 2 разновидности реализации – 100Base-TX и 100Base-T4.
Различаются они количеством используемых пар и категорией применяемого
кабеля. 100Base-TX использует 2 пары кабеля UTP категории 5, 100Base-T4
использует 4 пары кабеля категории 3 или выше.

Наибольшее
распространение получил стандарт 100Base-TX, 100Base-T4 применяется в
основном в старых сетях, построенных на UTP класса 3. Максимально
допустимое расстояние от станции до концентратора 100 м, как и в
10Base-T , но в связи с изменением скорости распространения сигналов
диаметр сети стандарта 100Base-T ограничен 200 м.

100 Base-FX – реализация Fast Ethernet с использованием в
качестве среды передачи многомодового оптоволоконного кабеля.
Ограничение длины сегмента – 412 метров при использовании
полудуплексного режима и 2 км – при использовании полнодуплексного.

…быстро, как только возможноПрогресс – штука
безостановочная. 100 Мбит/с – немалая скорость передачи данных, но для
магистральных каналов ее может не хватить. В 1996 г. начались работы по
стандартизации сетей Ethernet со скоростью передачи данных 1000 Мбит/с,
которые называют Gigabit Ethernet.

Был образован Gigabit Ethernet Alliance, в который вошли 11 компаний:
3Com, Bay Networks, Cisco, Compaq, Granite Systems, Intel, LSI Logic,
Packet Engines, Sun, UB Networks и VLSI Technology. К началу 1998 года
в Альянс входило уже более 100 компаний.

В июне 1998 г. принимается
стандарт IEEE 802.3z, использующий одномодовые и многомодовые
оптоволоконные кабели, а также STP категории 5 на короткие расстояния
(до 25 м). Столь малое допустимое расстояние в случае применения UTP
обуславливало сомнительную возможность практического применения такого
варианта.

Спецификации Gigabit Ethernet:

1000Base-LX: трансиверы на длинноволновом лазере,
одномодовый и многомодовый оптоволоконный кабель, ограничения длины
сегмента 550 м для многомодового и 3 км для одномодового кабеля.
Некоторые фирмы предлагают оборудование, позволяющее строить сегменты с
применением одномодового кабеля гораздо большей длины – десятки
километров.

1000Base-SX: трансиверы на коротковолновом лазере и
многомодовый оптический кабель. Ограничения длины сегмента 300 м для
кабеля с диаметром оптического проводника 62.5 мкм и 550 м для кабеля с
диаметром проводника 50 мкм.

1000Base-CX: экранированная витая пару. Ограничение длины сегмента – 25 м.

1000Base-T: неэкранированная витая пару. Ограничение длины сегмента – 100 м.

Поскольку стандарт на оптоволоконный Gigabit Ethernet вышел на
год раньше, на рынке преобладает оборудование, рассчитанное на работу с
оптическим физическим интерфейсом. Применять или не применять Gigabit
Ethernet – вопрос, активно обсуждаемый в настоящее время.

Сейчас
немногие отечественные сети нуждаются в столь высокой пропускной
способности. С учетом снижения цен, имеет смысл переходить на Gigabit
Ethernet, когда все другие возможности действительно исчерпаны, во
всяком случае, в существующих сетях.

Есть ли предел скорости у технологии Ethernet? В начале 2000 г.
3Com, Cisco Systems, Extreme Networks, Intel, Nortel Networks, Sun
Microsystems и Worldwide Packets основали 10 Gigabit Alliance. Задача
Альянса – способствовать работе комитета IEEE в разработке стандарта
802.

3ae (10 Gigabit Ethernet), который планируется принять весной 2002
г. Рабочая группа IEEE уже опубликовала предварительную информацию об
ограничениях на длину сегмента сети с пропускной способностью 10
Гбит/с: до 100 метров для используемого в настоящее время многомодового
оптоволоконного кабеля и до 300 метров для нового усовершенствованного
многомодового оптоволоконного кабеля.

Модель OSIПри подробном рассмотрении
функционирования сетей часто упоминается понятие уровней взаимодействия
компонентов сети. В качестве “линейки” для определения уровней
используется модель OSI (Open System Interconnect – взаимодействие
открытых систем), разработанная как описание структуры идеальной
сетевой архитектуры.

В модели OSI семь уровней взаимодействия для
рассмотрения процесса обмена информацией между устройствами в сети.
Каждый из уровней сети относительно автономен и рассматривается
отдельно. Модель OSI используется для определения функций каждого
уровня.

1) Физический уровень определяет электротехнические,
механические, процедурные и функциональные характеристики активации,
поддержания и дезактивации физического канала между конечными
системами. Спецификации физического уровня определяют уровни
напряжений, синхронизацию изменения напряжений, скорость передачи
физической информации, максимальные расстояния передачи информации,
требования к среде передачи, физические соединители и другие
аналогичные характеристики.

2) Канальный уровень (Data Link) обеспечивает надежный транзит
данных через физический канал. Выполняя эту задачу, канальный уровень
решает вопросы физической адресации, топологии сети, линейной
дисциплины (каким образом конечной системе использовать сетевой канал),
уведомления о неисправностях, упорядоченной доставки блоков данных и
управления потоком информации.

Обычно этот уровень разбивается на два
подуровня: LLC (Logical Link Control) в верхней половине,
осуществляющего проверку на ошибки, и MAC (Media Access Control) в
нижней половине, отвечающего за физическую адресацию и прием/передачу
пакетов на физическом уровне.

3) Сетевой уровень обеспечивает соединение и выбор маршрута
между двумя конечными системами, подключенными к разным “подсетям”,
которые могут находиться в разных географических пунктах. Сетевой
уровень отвечает за выбор оптимального маршрута между станциями,
которые в могут быть разделены множеством соединенных между собой
подсетей.

4) Транспортный – самый высокий из уровней, отвечающих за
транспортировку данных. На этом уровне обеспечивается надежная
транспортировка данных через объединенную сеть. Транспортный уровень
обеспечивает механизмы для установки, поддержания и упорядоченного
завершения действия виртуальных каналов, систем обнаружения и
устранения неисправностей транспортировки и управления информационным
потоком.

5) Сеансовый уровень устанавливает, управляет и завершает
сеансы взаимодействия между прикладными задачами. Сеансы состоят из
диалога между двумя или более объектами представления. Сеансовый
уровень синхронизирует диалог между объектами представительного уровня
и управляет обменом информации между ними.

6) Уровень представления отвечает за то, чтобы информация,
посылаемая из прикладного уровня одной системы, была читаемой для
прикладного уровня другой системы. При необходимости представительный
уровень осуществляет трансляцию между множеством форматов представления
информации путем использования общего формата представления информации.

7) Прикладной уровень отвечает за выполнение пользовательских
задач. Он идентифицирует и устанавливает наличие предполагаемых
партнеров для связи, синхронизирует совместно работающие прикладные
программы, устанавливает соглашение по процедурам устранения ошибок и
управления целостностью информации, а также определяет, достаточно ли
ресурсов для предполагаемой связи.

Итоги

Технология Ethernet претерпела немало изменений с момента своего появления. Сегодня она способна обеспечить высокоскоростное соединение, лишенное коллизий и не ограниченное небольшой нагрузкой сети, как это было в случае с классическим Ethernet.

В современных локальных сетях используются коммутаторы, которые по своей функциональности значительно эффективнее концентраторов. Больше нет разделяемой среды и связанных с ней коллизий, затрудняющих работу с сетью. Свичи анализируют заголовки и передают кадры только конечному получателю по принципу точка-точка. Способны “изучать” сеть благодаря таблице коммутации и алгоритму обратного обучения.

Плюсами коммутируемого Ethernet являются масштабируемость, высокая производительность и безопасность.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *